Question

Two slits are separated by 2.10 × 10-5 m and illuminated by a laser. The interference...

Two slits are separated by 2.10 × 10-5 m and illuminated by a laser. The interference pattern is projected on a screen that is 2.00 m away from the slits. If the 5th bright fringe on the screen is 15.0 cm away from the central fringe, what is the wavelength of the laser light?

a. 224 nm

b. 234 nm

c. 100 nm

d. 315 nm

e. 204 nm

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two slits are separated by 2.10 × 10-5 m and illuminated by a laser. The interference...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two narrow slits are illuminated by a laser with a wavelength of 517 nm. The interference...

    Two narrow slits are illuminated by a laser with a wavelength of 517 nm. The interference pattern on a screen located x = 5.50 m away shows that the fourth-order bright fringe is located y = 9.40 cm away from the central bright fringe. Calculate the distance between the two slits. The screen is now moved 1.7 m further away. What is the new distance between the central and the fourth-order bright fringe?

  • Two narrow slits are illuminated by a laser with a wavelength of 542 nm. The interference pattern...

    Two narrow slits are illuminated by a laser with a wavelength of 542 nm. The interference pattern on a screen located x=5.10 m away shows that the fourth-order bright fringe is located y = 6.10 cm away from the central bright fringe. Calculate the distance between the two slits.The screen is now moved 2.4 m further away. What is the new distance between the central and the fourth-order bright fringe? 

  • Two narrow slits are illuminated by a laser with a wavelength of 541 nm. The interference...

    Two narrow slits are illuminated by a laser with a wavelength of 541 nm. The interference pattern on a screen located x = 4.60 m away shows that the third-order bright fringe is located y = 8.60 cm away from the central bright fringe. Calculate the distance between the two slits. a.) 8.68×10-3 cm The screen is now moved 2.3 m further away. What is the new distance between the central and the third-order bright fringe? b.) ????

  • In a two - slit experiment, the slit separation is 3.00 × m. The interference pattern...

    In a two - slit experiment, the slit separation is 3.00 × m. The interference pattern is created on a screen that is 2.00 m away from the slits. If the 7th bright fringe on the screen is 10.0 cm away from the central fringe, what is the wavelength of the light? A) 100 nm B) 204 nm C) 214 nm D) 224 nm E) 234 nm

  • Two narrow slits are illuminated by a laser with a wavelength of 514 nm. The interference...

    Two narrow slits are illuminated by a laser with a wavelength of 514 nm. The interference pattern on a screen located x = 4.60 m away shows that the third-order bright fringe is located y = 9.00 cm away from the central bright fringe. Calculate the distance between the two slits. 7.88×10-3 cm You are correct. Previous Tries The screen is now moved 1.1 m further away. What is the new distance between the central and the third-order bright fringe?...

  • Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...

    Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 7 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 21.5 mm...

  • Two thin slits separated by 2.2 mm are illuminated by light from a He-Ne laser (λ...

    Two thin slits separated by 2.2 mm are illuminated by light from a He-Ne laser (λ = 633 nm), producing interference fringes on a distant screen. Find the angle between the centers of the central bright fringe and the next bright fringe. (in degrees)

  • A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How...

    A laser beam ( - 632.6 nm) is incident on two slits 0.200 mm apart. How far apart are the bright interference fringes on a screen 5 m away from the double slits? cm 2. (-/10 Points) DETAILS SERCP7 24.P.002. MY NOTES PRACTICE ANOTHER In a Young's double-slit experiment, a set of parallel sits with a separation of 0.050 mm is illuminated by light having a wavelength of 593 nm and the interference pattern observed on a screen 3.50 m...

  • D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the...

    PLEASE ANSWER 3 AND 5 SHOW ALL ALGEBRA STEPS D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the second order fringe at 0.15 angle. The interference pattern from the slits is projected onto a screen that is 3.00 m away (a) What is the wavelength of the light used (in nm)? (b) What is the separation distance (in mm) on the screen of the second bright fringe from the central bright fringe? (c)...

  • Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...

    Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.45 x10^-5 m and an interference pattern is observed on a screen 2.00 m from the plane of the slits. (a) Find the angle (in degrees) from the central maximum to the first bright fringe. (b) At what angle (in degrees) from the central maximum does the second dark fringe appear? (c) Find the distance (in m) from the central maximum to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT