Question

You copy the following paragraph from a Martian physics textbook: "1 snorf of an ideal gas occupies a volume of 1.35 zaks. At a temperature of 22 glips, the gas has a pressure of 10.9 klads. At a temperature of -11 glips, the same gas now has a pressure of 8.2 klads." Determine the temperature of absolute zero in glips.You copy the following paragraph from a Martian physics textbook: 1 snorf of an ideal gas occupies a volume of 1.35 zaks. At

Please help with this one, Thank you!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1 Physica daw daw is Soune evergwhic assumed to be VON bouces! This is const. . PE Ti Те > Klads, (at glips;) 10-9 Klads. (ae

Add a comment
Know the answer?
Add Answer to:
You copy the following paragraph from a Martian physics textbook: "1 snorf of an ideal gas...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The ideal gas law relates the temperature, pressure and volume of an ideal gas. Suppose the...

    The ideal gas law relates the temperature, pressure and volume of an ideal gas. Suppose the gas inside a particular balloon has an absolute pressure of 3.15×105 Pa and occupies a volume of 5.33×10-3 m3 at a temperature of 16.7°C. How many moles of gas are inside the balloon? (do not enter units) How many molecules of gas are inside the balloon? (do not enter units)

  • a monoatomic ideal gas originally occupies a volume of 3.0 L and then expands to a...

    a monoatomic ideal gas originally occupies a volume of 3.0 L and then expands to a new volume of 3.0 L and then expands to a new volume of 24.0 L if the final pressure of the gas is 1 atm and the change in entropy of the gas during expansion is zero, what must have been the inital pressure of the gas (Hint: it may help to determine the ratio of final to inital temperature Tf/Ti) Please any help...

  • A system of ideal gas has an initial pressure of 114 kPa and occupies a volume...

    A system of ideal gas has an initial pressure of 114 kPa and occupies a volume of 6.00 liters. Doubling the system’s absolute temperature by means of a constant-pressure process would require an amount of work W. Instead, you decide to double the absolute temperature by carrying out two processes in sequence, a constant-pressure process followed by a constant-volume process. In this case, the total work done in the two-process sequence is W/2. Calculate the final pressure of the system....

  • 1. (a) How many molecules are present in a sample of an ideal gas that occupies...

    1. (a) How many molecules are present in a sample of an ideal gas that occupies a volume of 2.10 cm3, is at a temperature of 20°C, and is at atmospheric pressure? (b) How many molecules of the gas are present if the volume and temperature are the same as in part (a), but the pressure is now 3.00 ✕ 10−11 Pa (an extremely good vacuum)? 2. An air bubble released by a submersible vehicle, 120 m below the surface...

  • 1) An ideal gas at 16.8 °C and a pressure of 2.04 x 105 Pa occupies...

    1) An ideal gas at 16.8 °C and a pressure of 2.04 x 105 Pa occupies a volume of 2.67 m3. (a) How many moles of gas are present? (b) If the volume is raised to 5.22 m3 and the temperature raised to 32.8 °C, what will be the pressure of the gas? 2) Two moles of an ideal gas are placed in a container whose volume is 7.9 x 10-3 m3. The absolute pressure of the gas is 5.4...

  • Please answer all parts of the question: a,b,c,d Ideal Gas Law The ideal gas law states...

    Please answer all parts of the question: a,b,c,d Ideal Gas Law The ideal gas law states that PV = Nk T where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the gas, and T is its absolute temperature. The constant kg is called the Boltzmann constant and has the value kg = 1.38x10-29 J/K. A very common expression of the ideal gas law uses the...

  • (a) An ideal gas occupies a volume of 1.8 cm3 at 20°C and atmospheric pressure. Determine...

    (a) An ideal gas occupies a volume of 1.8 cm3 at 20°C and atmospheric pressure. Determine the number of molecules of gas in the container. _____________ molecules (b) If the pressure of the 1.8-cm3 volume is reduced to 2.4 ✕ 10−11 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container? ____________ mol

  • (a) An ideal gas occupies a volume of 1.2 cm3 at 20°C and atmospheric pressure. Determine...

    (a) An ideal gas occupies a volume of 1.2 cm3 at 20°C and atmospheric pressure. Determine the number of molecules of gas in the container. __ moleculues (b) If the pressure of the 1.2-cm3 volume is reduced to 1.6 ✕ 10−11 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container? __ mol

  • (a) An ideal gas occupies a volume of 2.6-cm3 at 20�C and atmospheric pressure. Determine the...

    (a) An ideal gas occupies a volume of 2.6-cm3 at 20�C and atmospheric pressure. Determine the number of molecules of gas in the container.__________ molecules (b) If the pressure of the 2.6-cm3 volume is reduced to 1.6 ? 10-11 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?_________molecules

  • The ideal gas law states that PV = NkgT where P is the absolute pressure of...

    The ideal gas law states that PV = NkgT where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the gas, and T is its absolute temperature. The constant ko is called the Boltzmann constant and has the value kg = 1.38x10-23J/K. A very common expression of the ideal gas law uses the number of moles, n- N/NA (NA is Avogadro's number, NA=6.021023 per mole). PV...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT