Question

A box slides from rest down a frictionless ramp inclined at 38.0° with respect to the horizontal and is stopped at the bottom
As shown in the figure below, a block of mass m starts from rest and slides on a frictionless loop-the-loop track with a loop
0 0
Add a comment Improve this question Transcribed image text
Answer #1

K = 2.00 *18 D haxsimo { 12.0kg x = 3.0m Let, the compression of springs .: Potential energia stored in the spring after comp:using of energy conservation Angh - ngar 5 mg sh - 222 สุว 2. h - Sye 2

Add a comment
Know the answer?
Add Answer to:
A box slides from rest down a frictionless ramp inclined at 38.0° with respect to the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A box slides from rest down a frictionless ramp inclined at 38.0° with respect to the...

    A box slides from rest down a frictionless ramp inclined at 38.0° with respect to the horizontal and is stopped at the bottom of the ramp by a spring with a spring constant of k = 2.00 x 104 N/m. If the box has a mass of 12.0 kg and slides 3.00 m from the point of release to the point where it comes to rest against the spring, determine the compression of the spring when the box comes to...

  • A 2.80-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring.

    A 2.80-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring. a. Determine the force constant of the spring, if the box compresses the spring 5.50 cm before coming to rest.  b. Determine the initial speed the box would need in order to compress the spring by 1.30 cm. A box slides from rest down a frictionless ramp inclined at 39.0° with respect to the horizontal and is stopped at the bottom of...

  • A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is...

    A block of mass 11.0 kg slides from rest down a frictionless 33.0° incline and is stopped by a strong spring with k = 2.80 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?

  • A block of mass m slides down a frictionless ramp to a loop of radius R,...

    A block of mass m slides down a frictionless ramp to a loop of radius R, also frictionless. It's initial height above the bottom of the loop is ?h = 3R and the block starts at rest. What is the magnitude of the normal force that the track of the loop exerts on the block at position 2? You can assume that the block is exactly at the horizontal height of the center of the loop when it reaches position...

  • A box with a mass of 8.67 kg slides up a ramp inclined at an angle...

    A box with a mass of 8.67 kg slides up a ramp inclined at an angle of 28.3° with the horizontal. The initial speed is 1.66 m/s and the coefficient of kinetic friction between the block and the ramp is 0.48. Determine the distance the block slides before coming to rest. m As shown in the figure below, a box of mass m = 35.0 kg is sliding along a horizontal frictionless surface at a speed vi = 5.55 m/s...

  • As shown in the figure below, a block of mass m starts from rest and slides...

    As shown in the figure below, a block of mass m starts from rest and slides on a frictionless loop-the-loop track with a loop radius of r. Determine the minimum release height h in order for the block to maintain contact with the track at all times. Express your answer in terms of the radius of the loop, r. h = lo

  • 3. A 4.00kg block (initially at rest) slides down a frictionless ramp which is inclined at...

    3. A 4.00kg block (initially at rest) slides down a frictionless ramp which is inclined at 42° above horizontal. After sliding for 1.20m, the block hits a spring with spring constant k = 110 a) Calculate the speed of the block just before it hits the spring. b) Calculate maximum distance the spring compresses.

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.4 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h-3.3 m and then collides with stationary block 2, which has mass m2 = 4m1 After the collision, block 2 slides into a region where the coefficient of kinetic frictionPr įs045 and comes to a stop nd stance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Frictionless (a) Number Unit...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT