Question

max Analyze a series RLC AC circuit for which R = 290 2,1 = 0.600 H, C = 22.5 pF, S = 50.0 Hz, and AV = 325 V. (a) Find the i
0 0
Add a comment Improve this question Transcribed image text
Answer #1

22 1 may = 325 V R = 290 V, L = 0.614 30 = 22:5 MF- 22.5 311667 f=5012: 1 AVma XL = LanfL 2010.6.)x5o = 188.56 L 6 XL = =wcas

Add a comment
Know the answer?
Add Answer to:
max Analyze a series RLC AC circuit for which R = 290 2,1 = 0.600 H,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use the worked example above to help you solve this problem. A series RLC AC circuit...

    Use the worked example above to help you solve this problem. A series RLC AC circuit has resistance R = 2.60 x 10-Q, inductance L-0.700 H, capacitance C-3.50 μF, frequency f-60.0 Hz, and maximum voltage ΔⅤmax = 2.00 x 102 V (a) Find the impedance (b) Find the maximum current in the circuit. (c) Find the phase angle (d) Find the maximum voltages across the elements R, max L, max C, max Δν EXERCISE HINTS: GETTING STARTED L I'M STUCK!...

  • max Use the worked example above to help you solve this problem. A series RLC AC...

    max Use the worked example above to help you solve this problem. A series RLC AC circuit has resistance R = 2.60 x 102, inductance I 0.800 H, capacitance C = 3.50 pF, frequency / = 60.0 Hz, and maximum voltage AV = 1.00 x 102 v. (a) Find the impedance. X Your response differs from the correct answer by more than 10%. Double check your calculations, 12 (b) Find the maximum current in the circuit. A (c) Find the...

  • A series RLC circuit has R 4252, L = 1.35 H, C = 3.8 uF. It...

    A series RLC circuit has R 4252, L = 1.35 H, C = 3.8 uF. It is connected to an AC source with f = 60.0 Hz and AV 150 V. אברח What if the frequency is now increased to f = 77 Hz, and we want to keep the impedance unchanged? (a) What new resistance should we use to achieve this goal? R= Ω (b) What is the phase angle (in degrees) between the current and the voltage now?...

  • An RLC series circuit is constructed with R = 190.0 Ω, C = 6.00 µF, and...

    An RLC series circuit is constructed with R = 190.0 Ω, C = 6.00 µF, and L = 0.54 H. The circuit is connected to an AC generator with a frequency of 60.0 Hz that delivers a maximum current of 2.30 A to the circuit. (a) What is the impedance of this circuit? ___ Ω (b) What are the maximum potential differences across each of the three circuit elements (R, L, and C)? VR, max =___ V VL, max =___...

  • An RLC series circuit is constructed with R-130.0 Ω, circuit. C-7.25 μF, and L-0.54 H. The...

    An RLC series circuit is constructed with R-130.0 Ω, circuit. C-7.25 μF, and L-0.54 H. The circuit is connected to an AC generator with a frequency of 60.0 Hz that delivers a maximum current of 2.20 A to the (a) What is the impedance of this circuit? (b) What are the maximum potential differences across each of the three circuit elements (R, L, and C)? VR, max И, max Vc, max (c) What is the phase angle between the source...

  • A series RLC circuit has R = 420 Ω, L = 1.45 H, C = 3.4...

    A series RLC circuit has R = 420 Ω, L = 1.45 H, C = 3.4 µF. It is connected to an AC source with f = 60.0 Hz and ΔVmax = 150 V. What if the frequency is now increased to f = 84 Hz, and we want to keep the impedance unchanged? (C) Find the maximum voltages across each element. ΔVR = V ΔVL = V ΔVC = V

  • Explore The RLC series circuit llustrated in the Active Figure has R-1.94 ?, L -1.87 H,...

    Explore The RLC series circuit llustrated in the Active Figure has R-1.94 ?, L -1.87 H, and C 198 ?F. The applied AC voltage has a frequency of f- 60 Hz and an rms voltage of AVmax 120 resistance inductance capacitance 1.0 1.0 1.0 1.0 1.0 1,5 1.5 2.0 2.0 ?? AUR UC (A) Find the inductive reactance, capacitive reactance, and impedance (B) Find the current through the circuit. (C) Find the phase difference between current and voltage (D) Find...

  • A series AC circuit contains a resistor, an Inductor of 220 mH, a capacitor of 4.80...

    A series AC circuit contains a resistor, an Inductor of 220 mH, a capacitor of 4.80 f, and a generator with Av max - 240 V operating at 50.0 Hz. The maximum current in the circuit is 130 mA (a) Calculate the inductive reactance (b) Calculate the capacitive reactance (c) Calculate the impedance kn (d) Calculate the resistance in the circuit kn (e) Calculate the phase angle between the current and the generator voltage

  • A series RLC circuit has R=4250, L=1.25H and C=3.50uF. It is connected to an AC source...

    A series RLC circuit has R=4250, L=1.25H and C=3.50uF. It is connected to an AC source with f=60.0 Hz and Vmax=150V. a. Determine the inductive reactance, the capacitive reactance and the impedance of the circuit. b. Find the Maximum current in the circuit. C. Find the phase angle between the current and voltage.

  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50...

    A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50 uF, and a source with AV = 240 V operating at 50.0 Hz. The max maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. The inductive reactance depends on the value of the inductance and the frequency of the source. Q (b) Calculate the capacitive reactance. (c) Calculate the impedance. kn (d) Calculate the resistance in the circuit. kn. (e)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT