Question

. Steam enters a turbine at 140 psi and 1000°F at steady state and expands adiabatically...

. Steam enters a turbine at 140 psi and 1000°F at steady state and expands adiabatically to 5 psi, 275°F. The mass flow rate of the steam is 4 lb/s. Determine for the turbine a. (3) Draw your complete understanding of this problem on a T-s diagram b. (8) The power developed, in hp c. (7) The rate of entropy production, in hp/°R d. (7) The isentropic turbine efficiency, %

0 0
Add a comment Improve this question Transcribed image text
Answer #1

con P = 140psi given innet condition P: 140 psi T - 1000°F 1:100007 VO Turbine. Outlet Condition. B : 5psi T2: 275 °F P2 spsi:. by powr devloped in Ihp) (adimo tais turbine : Q=0 power deplover = m ( hi ha) Q:0) Power devloped a 4 (16/sec) ( 1530-418isenpopie and if expansion is ( S.: 52691.88) preesure of exit of turbine (PP spsi) them properties of Stome P: 5 psi) So hes

Add a comment
Know the answer?
Add Answer to:
. Steam enters a turbine at 140 psi and 1000°F at steady state and expands adiabatically...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Superheated water steam at 5 bar and 360 C enters a turbine operating at steady...

    1. Superheated water steam at 5 bar and 360 C enters a turbine operating at steady state with a volume rate of 0.7 m3/s and expanded adiabatically to the exit state of 1 bar and 200 C, respectively. Kinetics and potential energy changes can be neglected. Determine: a) (2 pts) mass flow rate in kg/s (2 pts) power developed in kW (3 pts) total rate of entropy production in kW/K (4 pts) isentropic turbine efficiency

  • Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands...

    Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 6.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat and kinetic and potential energy effects are negligible. Determine the power developed by the turbine in kW. ht 6/3 of En Help I S Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow...

  • 3. Saturated water vapor at 300°F enters a compressor operating at steady state with a mass...

    3. Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 800 lbf/in. Ignore kinetic and potential energy effects. If the power input is 2150 hp, determine for the compressor a) The isentropic compressor efficiency b) Rate of entropy production (hp/ R)

  • Problem 6.066 Steam at 550 lbf/in.2, 700°F enters a turbine operating at steady state and exits...

    Problem 6.066 Steam at 550 lbf/in.2, 700°F enters a turbine operating at steady state and exits at 1 lbf/in. 2 The turbine produces 600 hp. For the turbine, heat transfer is negligible as are kinetic and potential energy effects. (a) Determine the quality of the steam at the turbine exit, the mass flow rate, in lb/s, and the entropy production rate, in Btu/s OR, if the turbine operates without internal irreversibilities. (b) Determine the mass flow rate, in lb/s, and...

  • Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state...

    Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state and expands to 10 kPa. The mass flow rate is 2 kg/s, and the power developed is 2626 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine (a) the isentropic turbine efficiency and (b) the rate of entropy production within the turbine in kw/K.

  • Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the...

    Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the high pressure turbine at 1500 psi, 1000'C with a mass flow rate of 5x10lb/hr. The steam exits the high pressure turbine at 90 psi, 350°F where the steam is then sent back to the boiler and reheated to 900°F before expanding through the low pressure turbine to 1 psi. Cooling water enters the condenser from a lake at 65°F and exits at 90°F Assume...

  • How do i solve C??? Please details Steam enters a two stage steady state turbine at 8 MPa and 500 C. It expands in the first stage to a state of 2 MPa and 350°C. Steam is then reheated at constant...

    How do i solve C??? Please details Steam enters a two stage steady state turbine at 8 MPa and 500 C. It expands in the first stage to a state of 2 MPa and 350°C. Steam is then reheated at constant pressure to a temperature of 500°C before it enters the second stage, where it exits at 30 kPa and a quality of 98%. The net power output of the turbine is 3 MW Assume the surroundings to be at...

  • NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...

    NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...

  • Water vapor at 6 MPa and 500 °C enters a turbine operating at steady state and...

    Water vapor at 6 MPa and 500 °C enters a turbine operating at steady state and expands to 1 bar. Mass flow rate is 2kg/s. Neglect heat transfer, kinetic energy and potential energy changes. For the actual process (1-2), water leaves the turbine with a specific entropy S2 = 7.1176 kJ / kg / k Find: a) Plot isentropic process in the turbine (1-2s) and the actual process in the turbine (1-2) on a T-s diagram. Justify the location of...

  • 3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and...

    3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and 700 C. The mass flow rate of the steam is 200 kg'min. The steam exits the turbine as a saturated vapor at 3 bar. The turbine produces 3.0 MW of power. Ignore potential and kinetic energy effects. Assuming heat transfer from the turbine to the surroundings occurs at 20 C, determine: (a) (20 pts) The rate of heat transfer, in kW (b) (20 pts)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT