Question

SOLVE WHAT IS BELOW FULLY AND CORRECTLY SHOWING THE WORK AND I WILL GIVE YOU THUMBS UP.

a) sketch the graph of the given function on the interval t ≥ 0.8(t) = uy(t) + 2из(t) — бид(t)

b) Sketch the graph of the given function and express f ( t ) in terms of the unit step functionuc(t).

f(t) = 0, 0 < t < 3, -2, 3 < t < 5, 2, 5 < t < 7, 1, t > 7.

c)Sketch the graph of the given function and express f ( t ) in terms of the unit step functionuc(t).Si, 0 < t < 2, f(t) = le-(1-2), t> 2.

d) find the Laplace transform of the given function

t < 2 f(t) = So, 1(t – 2), 122

e) find the Laplace transform of the given functionf(t) = (t – 3)uz(t) – (t – 2)u3(t)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a) Let us first understand what each component of g(t) means. We have

\small u_1(t)=\begin{cases} 0 & \text{ if } t<1 \\ 1 & \text{ if } t\geq 1 \end{cases}

\small 2u_3(t)=\begin{cases} 0 & \text{ if } t<3 \\ 2 & \text{ if } t\geq 3 \end{cases}

\small -6u_3(t)=\begin{cases} 0 & \text{ if } t<4 \\ -6 & \text{ if } t\geq 4 \end{cases}

Thus, g(t) becomes

\small g(t)=\begin{cases} 0+0+0 & \text{ if } 0\leq t<1 \\ 1+0+0 & \text{ if } 1\leq t <3 \\ 1+2+0 & \text{ if } 3\leq t < 4 \\ 1+2-6 & \text{ if } t\geq 4 \end{cases}=\begin{cases} 0& \text{ if } 0\leq t<1 \\ 1 & \text{ if } 1\leq t <3 \\ 3 & \text{ if } 3\leq t < 4 \\ -3 & \text{ if } t\geq 4 \end{cases}

Now, we can simply sketch g(t) as a piecewise function, and we get:

44 24 0 -2+ -44

this completes part (a)

(b) We have the function

\small f(t)}=\begin{cases} 0& \text{ if } 0\leq t<3 \\ -2 & \text{ if } 3\leq t <5 \\ 2 & \text{ if } 5\leq t < 7 \\ 1 & \text{ if } t\geq 7 \end{cases}

Sketching the graph of the function we have

0 -24 24 - 100

Now, we write f(t) using the unit step function uc(t) as

\small f(t)=0 [u_0(t)-u_3(t)]-2[u_3(t)-u_5(t)]+2[u_5(t)-u_7(t)]+1[u_7(t)]

Opening the brackets and simplifying we get

\small \Rightarrow f(t)=-2u_3(t)+4u_5(t)-u_7(t)

which is the required answer.

(c) Now we have

\small f(t)=\begin{cases} 1 & \text{ if } 0\leq t <2 \\ e^{-(t-2)} & \text{ if } t\geq 2 \end{cases}

Sketching the graph of the function we have

N 1 0 3 N

Now, we write f(t) using the unit step function uc(t) as

\small f(t)=1[u_0(t)-u_2(t)]+e^{-(t-2)}[u_2(t)]

Opening brackets and simplifying we have

\small \Rightarrow f(t)=u_0(t)+(e^{-(t-2)}-1)u_2(t)

which is the required answer

(d) To find the Laplace transform, first we need to write the function using the unit step function, as

\small f(t)=(t-2)^2u_2(t)

Now, we use the following formula to calculate the Laplace transform:

\small \frak L \{u_c(t)f(t)\}=e^{-cs}\frak L \{f(t+c)\}

So, we have

\small \frak L \{(t-2)^2u_2(t)\}=e^{-2s}\frak L \{((t+2)-2)^2\}=e^{-2s}\frak L \{t^2\}=e^{-2s}\cdot {2\over s^3}

Therefore our answer is

\small \frak L \{f(t)\}={2\over s^3}e^{-2s}

(e) We find the Laplace transform in a similar way, so

\small \frak L \{f(t)\}\\ \\ =\frak L \{(t-3)u_2(t)\}-\frak L \{(t-2)u_3(t)\} \\ \\ =e^{-2s}\frak L \{t+2-3\}-e^{-3s}\frak {L} \{t+3-2\} \\ \\ =e^{-2s}\frak L \{t-1\}-e^{-3s}\frak {L} \{t+1\} \\ \\= e^{-2s}\left ( {1\over s^2}-{1\over s} \right )-e^{-3s}\left ({1\over s^2}+{1\over s} \right ) \\ \\ \\ = {e^{-2s}-e^{-3s}\over s^2}-{e^{-2s}+e^{-3s}\over s}

which is the required answer

Add a comment
Know the answer?
Add Answer to:
SOLVE WHAT IS BELOW FULLY AND CORRECTLY SHOWING THE WORK AND I WILL GIVE YOU THUMBS...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT