Question

9. Take the Laplace transform of both sides of the equation below and then solve for Y(s) = L{y}. Do NOT try to find y(t)! y

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ques: y-by + 3by gen. sin(at) .-- 4-5 & 7)-7 solution: Taking haplace transforms on both sides, we L {y - sy + 3 by} = LL {y}= Y(e? {{y?= 8 Y(3) - 5 L {y } = 8² Y(*) – 55-7 Putting these equations in , we ger Y(6)– 52-1)-5181 Y(s) — 5) +36.Y(8)

Add a comment
Know the answer?
Add Answer to:
9. Take the Laplace transform of both sides of the equation below and then solve for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1 point) Consider the initial value problem y" + 36y-cos(61), y(0)-6 (0)-8, a. Take the Laplace transform of both s...

    1 point) Consider the initial value problem y" + 36y-cos(61), y(0)-6 (0)-8, a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). help (formulas) b. Solv e your equation for Y (s) Y(s) = L { y(t)) = c. Take the inverse...

  • Consider the initial value problem y′+3y=10e^(7t)        y(0)=4. a. Take the Laplace transform of both sides...

    Consider the initial value problem y′+3y=10e^(7t)        y(0)=4. a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). b. Solve your equation for Y(s). Y(s)=L[y(t)]= c. Take the inverse Laplace transform of both sides of the previous equation to solve for y(t)....

  • (1 point) Consider the initial value problem a. Take the Laplace transform of both sides of...

    (1 point) Consider the initial value problem a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of v(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). help (formulas) (sh2+4)Y(s)-(8s+5) Solve your equation for Y(s) b. c. Take the inverse Laplace transform of both sides of the previous equation to solve for...

  • (1 point) In this exercise we will use the Laplace transform to solve the following initial...

    (1 point) In this exercise we will use the Laplace transform to solve the following initial value problem: y-y={o. ist 1, 031<1. y(0) = 0 (1) First, using Y for the Laplace transform of y(t), i.e., Y = L(y(t)), find the equation obtained by taking the Laplace transform of the initial value problem (2) Next solve for Y = (3) Finally apply the inverse Laplace transform to find y(t) y) = (1 point) Consider the initial value problem O +6y=...

  • Use the Laplace transform to solve the following initial value problem: 44" + 2y + 18y...

    Use the Laplace transform to solve the following initial value problem: 44" + 2y + 18y = 3 cos(3t), y(0) = 0, y(0) = 0. a. First, take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation and then solve for L{y(t)}. Do not perform partial fraction decomposition since we will write the solution in terms of a convolution integral. 3s L{y(t)}(s) = (452 + 25 +2s + 18)(52+9) b. Express the...

  • (1 point) Consider the initial value problem where g)-t ifosi«5 a. Take the Laplace transform of...

    (1 point) Consider the initial value problem where g)-t ifosi«5 a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). help (formulas) b. Solve your equation for Y(s) (s) = L {y(t)) = c. Take the inverse Laplace transform of both sides...

  • (t)= . Use the Laplace transform to solve the following initial value problem: 44" + 2y...

    (t)= . Use the Laplace transform to solve the following initial value problem: 44" + 2y + 18y = 3 cos(3+), y(0) = 0, y(0) = 0. a. First, take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation and then solve for L{y(t)}. Do not perform partial fraction decomposition since we will write the solution in terms of a convolution integral. L{y(t)}(s) b. Express the solution y(t) in terms of a...

  • (1 point) Consider the initial value problem y"36y g(t), y(0) 0, /(0) 0, t if 0<t<5 0 if 5t<00. where g(t)...

    (1 point) Consider the initial value problem y"36y g(t), y(0) 0, /(0) 0, t if 0<t<5 0 if 5t<00. where g(t) create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from a. Take the Laplace transform of both sides the given differential equation one side of the equation the other (until you get to part (b) below). help (formulas) b. Solve your equation for Y(s). Y(s) C{y(t)} solve for y(t) c....

  • Apply the Laplace transform to the differential equation, and solve for Y(s). DO NOT solve the...

    Apply the Laplace transform to the differential equation, and solve for Y(s). DO NOT solve the differential equation. Recall: h(t - a) is the unit step function shifted to the right a units. y" + 25y = (3t - 6)h(t – 2) - (3t – 12)h(t – 4), y(0) = y' (O) = 0 Y(8) -

  • (1 point) Consider the initial value problem 4y 8t, y(0) 4, y'(0) 3. f both sides of the given differential equatio...

    (1 point) Consider the initial value problem 4y 8t, y(0) 4, y'(0) 3. f both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from othe other (until you get to part (b) below). Take the Laplace transform one side of the equation help (formulas) b. Solve your equation for Y(8) Y(s) C{y(t) = Take the inverse Laplace transform of both sides of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT