Question

Question 12 5 pts A beam of light that consists of a mixture of red light (1 = 694 nm in vacuum) and violet light (X = 441 nm

can you solve this question

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(n=2) ( Second ander maxima) zdsino= ny 2d smo. Red = (2) X Red 211661) SMOR 2x694) OR = Sin-1/2x694 = 24.697° 2x1661 2d sin

Please rate

if any mistake in this answer please comment i will clarify your doubt . thank you

Add a comment
Know the answer?
Add Answer to:
can you solve this question Question 12 5 pts A beam of light that consists of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PLEASE ANSWER ALL OF THE QUESTIONS Question 1 5 pts An object is placed 7 cm...

    PLEASE ANSWER ALL OF THE QUESTIONS Question 1 5 pts An object is placed 7 cm to the left of a converging lens with a focal length of 12 cm. What is the magnification of the final image with respect to the object? If the image is real, the magnification is negative. Please include the minus sign in the answer. Please round your answer to one decimal place. Question 7 5 pts A double slit is illuminated with monochromatic light...

  • The hydrogen spectrum has a red line at 656 nm and a violet line at 434...

    The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What angular separation between these two spectral lines is obtained with a diffraction grating that has 4014 lines/cm? (Assume that the light is incident normally on the grating.) 5.11 x first order separation Your incorrect answer may have resulted from roundoff error. Make sure you keep extra significant figures in intermediate steps of your calculation. 10.21 x second order By how many wavelengths...

  • (a) White light is spread out into its spectral components by a diffraction grating. If the...

    (a) White light is spread out into its spectral components by a diffraction grating. If the grating has 2,070 grooves per centimeter, at what angle (in degrees) does red light of wavelength 640 nm appear in first order? (Assume that the light is incident normally on the gratings.) (b) What If? What is the angular separation (in degrees) between the first-order maximum for 640 nm red light and the first-order maximum for green light of wavelength 525 nm? 11. (-/1...

  • A diffraction grating having 180 lines/mm is illuminated with a light signal containing only two wavelengths,...

    A diffraction grating having 180 lines/mm is illuminated with a light signal containing only two wavelengths, λ1 = 444 nm and λ2 = 555 nm. The signal is incident perpendicularly on the grating. (a) What is the angular separation between the second-order maxima of these two wavelengths? (b) What is the smallest angle at which two of the resulting maxima are superimposed? (c) What is the highest order for which maxima for both wavelengths are present in the diffraction pattern?

  • A diffraction grating having 190 lines/mm is illuminated with a light signal containing only two wavelengths,...

    A diffraction grating having 190 lines/mm is illuminated with a light signal containing only two wavelengths, λ1 = 440 nm and λ2 = 550 nm. The signal is incident perpendicularly on the grating. (a) What is the angular separation between the second-order maxima of these two wavelengths? (b) What is the smallest angle at which two of the resulting maxima are superimposed? (c) What is the highest order for which maxima for both wavelengths are present in the diffraction pattern?

  • A diffraction grating having 190 lines/mm is illuminated with a light signal containing only two wavelengths,...

    A diffraction grating having 190 lines/mm is illuminated with a light signal containing only two wavelengths, λ1 = 420 nm and λ2-525 nm. The signal is incident perpendicularly on the grating. (a) What is the angular separation between the second-order maxima of these two wavelengths? (b) What is the smallest angle at which two of the resulting maxima are superimposed? (c) What is the highest order for which maxima for both wavelengths are present in the diffraction pattern? (a) Number...

  • Suppose that you have a reflection diffraction grating with n= 140 lines per millimeter. Light from...

    Suppose that you have a reflection diffraction grating with n= 140 lines per millimeter. Light from a sodium lamp passes through the grating and is diffracted onto a distant screen. a. Two visible lines in the sodium spectrum have wavelengths 498 nm and 569 nm. What is the angular separation Δθ of the first maxima of these spectral lines generated by this diffraction grating? answer is 57 degrees b. How wide does this grating need to be to allow you...

  • Light from two sources, 416 nm and 626 nm, is incident on a diffraction grating that...

    Light from two sources, 416 nm and 626 nm, is incident on a diffraction grating that has 5,485 lines/cm. What is the angular separation of the second-order maxima of the two waves? Write your answer in degrees. Equation: dSint =mX

  • Intense white light is incident on a diffraction grating that has 460 lines/mm. (a) What is...

    Intense white light is incident on a diffraction grating that has 460 lines/mm. (a) What is the highest order in which the complete visible spectrum can be seen with this grating? (Enter 1 for first order, 2 for second order, etc.) (b) What is the angular separation between the violet edge (400 nm) and the red edge (700 nm) of the first order spectrum produced by the grating?

  • Intense white light is incident on a diffraction grating that has 610 lines/mm. (a) What is...

    Intense white light is incident on a diffraction grating that has 610 lines/mm. (a) What is the highest order in which the complete visible spectrum can be seen with this grating? (Enter 1 for first order, 2 for second order, etc.) (b) What is the angular separation between the violet edge (400 nm) and the red edge (700 nm) of the first order spectrum produced by the grating? °

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT