Question

Use the information below to answer the next two questions about RLC series circuit. A RLC series circuit has R=5.0082,L=0.01
What is the inductive reactance of the RLC series circuit? Answer: 22 What is the capacitive reactance of the RLC series circ
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Vomg = 120V R = 5.002 L = 0.0150H (= 330x106 F - 60.0 H2 fo b x = wh anfL X = 20X60 x 010150 J. - 5.652 Xc = we 2xX60x330x10°

Add a comment
Know the answer?
Add Answer to:
Use the information below to answer the next two questions about RLC series circuit. A RLC...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use the information below to answer the next two questions about RLC series circuit. A RLC...

    Use the information below to answer the next two questions about RLC series circuit. A RLC series circuit has R=5.000, L = 0.0150H and C = 330x10 F. This circuit is connected to an AC source with Vrms = 120V and f = 60.0Hz. What is the power factor of the RLC series circuit? Answer: What is the phase angle of the RLC series circuit? Answer: What is the average power dissipated by the RLC series circuit? Answer: x103w What...

  • 4. A series RLC circuit has R=42512, L=1.25H and C=3.50 F. It is connected to an...

    4. A series RLC circuit has R=42512, L=1.25H and C=3.50 F. It is connected to an AC source with f=60.0Hz and AVmax=150V. a. Determine the inductive reactance, the capacitive reactance and the impedance of the circuit. b. Find the Maximum current in the circuit. C. Find the phase angle between the current and voltage.

  • A series RLC circuit has resistance R = 16.09, inductive reactance X, = 28.0 , and...

    A series RLC circuit has resistance R = 16.09, inductive reactance X, = 28.0 , and capacitive reactance X = 15.0 . If the maximum voltage across the resistor is AV, = 155 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) HINT (a) the maximum voltage across the inductor (in V) (b) the maximum voltage across the...

  • An RLC circuit consists of an alternating voltage source with RMS voltage 90 V and frequency...

    An RLC circuit consists of an alternating voltage source with RMS voltage 90 V and frequency 100 Hz, 180 ohm resistor, 200mH inductor, and a 900 micro-F capacitor, all wired in series. A) What is inductive reactance of the circuit? B) What is the capacitive reactance of the circuit?C) What is the impedance  of the circuit? D)What is RMS current in the circuit?E) If the frequency is adjustable what frequency should you use to maximize the current in the circuit?

  • An RLC circuit consists of an alternating voltage source with RMS voltage 90 V and frequency 100 Hz

    An RLC circuit consists of an alternating voltage source with RMS voltage 90 V and frequency 100 Hz, a 180 Ohm resistor a 200 ml inductor, and a 900 micro-F capacitor, all wired in series. a) What is the inductive reactance of the circuit? b) What is the capacitive reactance of the circuit? c) What is the Impedance of the circuit? d) What is the RMS current in the circuit? e) of the frequency is adjustable, what frequency should you use to maximize the current...

  • 4) An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an A...

    4) An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC voltage source with an RMS voltage of 59 volts. At half the resonant frequency, the phase angle is -35 degrees and the inductive reactance is 46 Ohms. What is the average dissipated power at twice the resonant frequency in Watts?

  • An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC v...

    An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC voltage source with an RMS voltage of 74 volts. At half the resonant frequency, the phase angle is -25 degrees and the inductive reactance is 47 Ohms. What is the average dissipated power at twice the resonant frequency in Watts?

  • 12. A sinusoidal voltage Δv = (75.0 V)sin(120t) is applied to a series RLC circuit with...

    12. A sinusoidal voltage Δv = (75.0 V)sin(120t) is applied to a series RLC circuit with L = 20.0 mH, C = 130.0 μF, and R = 32.0 Ω. (a) What is the impedance of the circuit? Ω (b) What is the maximum current in the circuit? A 11.An AC power source has an rms voltage of 120 V and operates at a frequency of 60.0 Hz. If a purely inductive circuit is made from the power source and a...

  • QUESTION 29 An RLC circuit consists of an alternating voltage source with RMS voltage 130 V...

    QUESTION 29 An RLC circuit consists of an alternating voltage source with RMS voltage 130 V and frequency 65 Hz, a 90 Ohm resistor, a 130 mH inductor, and a 200 micro-F capacitor, all wired in series. a) What is the inductive reactance of the circuit? b) What is the capacitive reactance of the circuit? c) What is the impedance of the circuit? d) What is the RMS current in the circuit? e) If the frequency is adjustable, what frequency...

  • A series RLC circuit has resistance R = 10.0 Ω, inductive reactance XL = 34.0 Ω,...

    A series RLC circuit has resistance R = 10.0 Ω, inductive reactance XL = 34.0 Ω, and capacitive reactance XC = 21.0 Ω. If the maximum voltage across the resistor is ΔVR = 165 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) (a) the maximum voltage across the inductor (in V) V (b) the maximum voltage across...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT