Question

Let U be a continuous random variable with the following probability density function: g(t) = 1+t -1<t< 0 1-t 0<t<1 0 otherwi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a.

To verify that g(t) is indeed a probability density function, we need to check for two conditions:

Condition 1: g(t) is non-negative for all values of t in the support of U.

Condition 2: The integral of g(t) integrated over the entire support of U integrates to 1.

Condition 1

Case I: When -1 ≤ t ≤ 0:

=> -1 ≤ t

=> 0 ≤ 1 + t

=> 0 ≤ g(t)

=> g(t) is non-negative when -1 ≤ t ≤ 0

Case II: When 0 ≤ t ≤ 1:

=> t ≤ 1

=> 0 ≤ 1 - t

=> 0 ≤ g(t)

=> g(t) is non-negative when 0 ≤ t ≤ 1

Thus, g(t) is non-negative for all values of t in the support of U.

Condition 2

We find:

\begin{align*} \int_{-1}^{1} g(t) \ dt &= \int_{-1}^{0} g(t) \ dt + \int_{0}^{1} g(t) \ dt \\ &= \int_{-1}^{0} (1+t) \ dt + \int_{0}^{1} (1-t) \ dt \\ &= \left[t+\frac{t^2}{2} \right ]_{t=-1}^{t=0} + \left[t - \frac{t^2}{2} \right ]_{t=0}^{t=1} \\ &= \left[\left(0+\frac{0^2}{2} \right ) - \left((-1) + \frac{(-1)^2}{2} \right )\right ] + \left[\left(1-\frac{1^2}{2} \right ) - \left(0-\frac{0^2}{2} \right ) \right ] \\ &= \left[\left(0+0 \right ) - \left(-1 + \frac{1}{2} \right )\right ] + \left[\left(1-\frac{1}{2} \right ) - \left(0-0 \right ) \right ] \\ &= \left[0 - \left(- \frac{1}{2} \right )\right ] + \left[\frac{1}{2}-0 \right ] \\ &= \frac{1}{2} + \frac{1}{2} \\ &= 1 \end{align*}

Thus, the integral of g(t) integrated over the entire support of U equals to 1.

Thus, g(t) is a valid probability density function.

b.

The expected value of U is given by:


\begin{align*} \bf E(U) &= \int_{-1}^{1} t*g(t) \ dt \\ &= \int_{-1}^{0} t*g(t) \ dt + \int_{0}^{1} t*g(t) \ dt \\ &= \int_{-1}^{0} t(1+t) \ dt + \int_{0}^{1} t(1-t) \ dt \\ &= \int_{-1}^{0} (t+t^2) \ dt + \int_{0}^{1} (t-t^2) \ dt \\ &= \left[\frac{t^2}{2}+\frac{t^3}{3} \right ]_{t=-1}^{t=0} + \left[\frac{t^2}{2} - \frac{t^3}{3} \right ]_{t=0}^{t=1} \\ &= \left[\left(\frac{0^2}{2}+\frac{0^3}{3} \right ) - \left(\frac{(-1)^2}{2}+\frac{(-1)^3}{3} \right ) \right ] + \left[\left(\frac{1^2}{2} - \frac{1^3}{3} \right ) - \left(\frac{0^2}{2} - \frac{0^3}{3} \right ) \right ] \\ &= \left[(0+0 ) - \left(\frac{1}{2}-\frac{1}{3} \right ) \right ] + \left[\left(\frac{1}{2} - \frac{1}{3} \right ) - (0-0) \right ] \\ &= \left[0 - \frac{3-2}{6} \right ] + \left[\frac{3-2}{6} -0 \right ] \\ &= -\frac{1}{6} + \frac{1}{6} \\ &= \bf 0 \ \ \ \ \ \ \ \ \ \ \ \ [ANSWER] \end{align*}

Now, before finding the variance of U, we find:

\begin{align*} E(U^2) &= \int_{-1}^{1} t^2*g(t) \ dt \\ &= \int_{-1}^{0} t^2*g(t) \ dt + \int_{0}^{1} t^2*g(t) \ dt \\ &= \int_{-1}^{0} t^2(1+t) \ dt + \int_{0}^{1} t^2(1-t) \ dt \\ &= \int_{-1}^{0} (t^2+t^3) \ dt + \int_{0}^{1} (t^2-t^3) \ dt \\ &= \left[\frac{t^3}{3}+\frac{t^4}{4} \right ]_{t=-1}^{t=0} + \left[\frac{t^3}{3} - \frac{t^4}{4} \right ]_{t=0}^{t=1} \\ &= \left[\left(\frac{0^3}{3}+\frac{0^4}{4} \right ) - \left(\frac{(-1)^3}{3}+\frac{(-1)^4}{4} \right ) \right ] + \left[\left(\frac{1^3}{3} - \frac{1^4}{4} \right ) - \left(\frac{0^3}{3} - \frac{0^4}{4} \right ) \right ] \\ &= \left[(0+0 ) - \left(-\frac{1}{3}+\frac{1}{4} \right ) \right ] + \left[\left(\frac{1}{3} - \frac{1}{4} \right ) - (0-0) \right ] \\ &= \left[0 - \left(\frac{-4+3}{12} \right ) \right ] + \left[\frac{4-3}{12} -0 \right ] \\ &= \left[0 - \left(\frac{-1}{12} \right ) \right ] + \left[\frac{1}{12} -0 \right ] \\ &= \frac{1}{12} + \frac{1}{12} \\ &= \frac{2}{12} \\ &= \frac{1}{6} \end{align*}

Thus, the variance of U is given by:

\begin{align*} \bf V(U) &= E(U^2) - [E(U)]^2 \\ &= \frac{1}{6} - 0^2 \\ & \bf \frac{1}{6} \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ANSWER] \end{align*}

For any queries, feel free to comment and ask.

If the solution was helpful to you, don't forget to upvote it by clicking on the 'thumbs up' button.

Add a comment
Know the answer?
Add Answer to:
Let U be a continuous random variable with the following probability density function: g(t) = 1+t...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT