Question

Consider two masses, M = 3.0 kg and M2 = 2.5 kg, connected by a strong cord of negligible mass that extends over a frictionle
0 0
Add a comment Improve this question Transcribed image text
Answer #1

The solution is given below.

I Tersion in the string gn acceleration due to pravima - 3kg AT - 9-8 m/s2 I 1 M2=2.5kg migsind Mgth, gusto R- Normal reacti

Thank you.

Add a comment
Know the answer?
Add Answer to:
Consider two masses, M = 3.0 kg and M2 = 2.5 kg, connected by a strong...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider two masses, M = 3.0 kg and M2 = 2.5 kg, connected by a strong...

    Consider two masses, M = 3.0 kg and M2 = 2.5 kg, connected by a strong cord of negligible mass that extends over a frictionless pulley. Mass M is placed on a surface that makes an angle of 30° with respect to the horizontal, while mass M2 is hanging freely. The coefficient of kinetic friction between the surface and the mass is hk = 0.25. a) Draw Free Body diagrams for the two masses b) Write the equations for the...

  • Consider two masses, M = 3.0 kg and M2 = 2.5 kg, connected by a strong...

    Consider two masses, M = 3.0 kg and M2 = 2.5 kg, connected by a strong cord of negligible mass that extends over a frictionless pulley. Mass M is placed on a surface that makes an angle of 30° with respect to the horizontal, while mass M2 is hanging freely. The coefficient of kinetic friction between the surface and the mass is Hi = 0.25. a) Draw Free Body diagrams for the two masses b) Write the equations for the...

  • Consider two masses: M = 2.0 kg and M2 =1.5 kg. Mass M moves on a...

    Consider two masses: M = 2.0 kg and M2 =1.5 kg. Mass M moves on a horizontal surface where the coefficient of kinetic friction Ilk = 0.40. Mass M, is hanging freely. Two masses are connected by a strong cord of negligible mass that extends over a pulley. M-20 kg H-0.40 M. - 1.5 kg a) Draw Free Body Diagrams for the two objects b) Write the equations for the two masses in the direction of motion ( both x...

  • Consider two masses: M=2.0 kg and M2 =1.5 kg. Mass M, moves on a horizontal surface...

    Consider two masses: M=2.0 kg and M2 =1.5 kg. Mass M, moves on a horizontal surface where the coefficient of kinetic friction Mk = 0.40. Mass M2 is hanging freely. Two masses are connected by a strong cord of negligible mass that extends over a pulley. M - 2.0 kg He=0.40 M = 1.5 kg a) Draw Free Body Diagrams for the two objects b) Write the equations for the two masses in the direction of motion ( both x...

  • Consider two masses: Mi=2.0 kg and M2 =1.5 kg. Mass Mı moves on a horizontal surface...

    Consider two masses: Mi=2.0 kg and M2 =1.5 kg. Mass Mı moves on a horizontal surface where the coefficient of kinetic friction 4k = 0.40. Mass M2 is hanging freely. Two masses are connected by a strong cord of negligible mass that extends over a pulley. M = 2.0 kg 2 MK = 0.40 My = 1.5 kg a) Draw Free Body Diagrams for the two objects b) Write the equations for the two masses in the direction of motion...

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • Two masses are connected by a massless rope. The mass of object 1 is 5.5 kg,...

    Two masses are connected by a massless rope. The mass of object 1 is 5.5 kg, and it rests on a surface with a 1.7 coefficient for static friction (us) and a .90 coefficient for kinetic friction (uk). Object 2 has a mass of 8.3 kg and hangs over the edge of the surface by a frictionless, massless pulley. The two objects begin at rest when object 2 is released to hang freely. A.) Draw a free body diagram for...

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • Two masses, m and M, of 1.0 and 3.0 kg, respectively, are connected by rope passing...

    Two masses, m and M, of 1.0 and 3.0 kg, respectively, are connected by rope passing through a pulley. The mass m is on an inclined plane without friction making an angle 30o with the horizontal. The mass M is on a horizontal plane without friction. The pulley, located between the two masses, is of negligible mass and offers no friction for the rope. A force, Fapp, is applied to the mass M, as illustrated below. a. Considering a module...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT