Question

5. Use the Limit Comparison Test to determine if the series converges or diverges. n-2 Σ3 -η + 3 n=1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Σ3 -η2 + 3 η – 2 n=1

\mathrm{Apply\:the\:Sum\:Rule}:\quad \sum a_n+b_n=\sum a_n+\sum b_n

=\sum _{n=1}^{\infty \:}\frac{n}{n^3-n^2+3}-\sum _{n=1}^{\infty \:}\frac{2}{n^3-n^2+3}

Let us check convergence of each series

\sum _{n=1}^{\infty \:}\frac{n}{n^3-n^2+3}

\mathrm{Apply\:Series\:Comparison\:Test}

\mathrm{Let}\:\sum \:a_n,\:\sum \:b_n\:\mathrm{be\:two\:positive\:sequences\:such\:that\:for\:all}\:n,\:\quad \:a_n\le \:b_n

\mathrm{If}\:\sum \:b_n\:\mathrm{converges,\:so\:does}\:\sum \:a_n

\mathrm{If}\:\sum \:a_n\:\mathrm{diverges,\:so\:does}\:\sum \:b_n

\sum _{n=1}^{\infty \:}\frac{n}{n^3-n^2+3}\le \sum _{n=1}^{\infty \:}\frac{n}{n^3-n^2}

\mathrm{Check\:convergence\:of\:}\sum _{n=2}^{\infty \:}\frac{n}{n^3-n^2}

Apply\:Telescoping\:Series\:Test

\mathrm{For\:a\:finite\:upper\:boundary},\:\sum _{n=k}^N\left(a_{n+1}-a_n\right)=a_{N+1}-a_k

\mathrm{For\:an\:infinite\:upper\:boundary,\:if}\:a_n\to 0,\:\mathrm{then}\:\sum _{n=k}^{\infty }\left(a_{n+1}-a_n\right)=-a_k

\frac{n}{n^3-n^2}=-\left(\frac{1}{n}\right)-\left(-\frac{1}{n-1}\right)

a_{n+1}=-\left(\frac{1}{n}\right)\quad \:a_n=-\frac{1}{n-1}\quad \:a_k=a_2=-\frac{1}{2-1}

\lim _{n\to \infty \:}\left(-\frac{1}{n-1}\right)=0

\mathrm{By\:the\:telescoping\:series\:test:}\quad \sum _{n=2}^{\infty \:}\frac{n}{n^3-n^2}=-a_k

=-\left(-\frac{1}{2-1}\right)

=1

\mathrm{By\:the\:comparison\:test}

=\mathrm{converges}

\mathrm{Now \:let \:us \:check \:for \:}\sum _{n=1}^{\infty \:}\frac{2}{n^3-n^2+3}

=2\cdot \sum _{n=1}^{\infty \:}\frac{1}{n^3-n^2+3}

Apply\:Series\:Comparison\:Test

\sum _{n=1}^{\infty \:}\frac{1}{n^3-n^2+3}\le \sum _{n=1}^{\infty \:}\frac{1}{n^3-n^2}

\mathrm{Check\:convergence\:of\:}\sum _{n=2}^{\infty \:}\frac{1}{n^3-n^2}

\mathrm{Apply\:Series\:Integral\:Test}

\mathrm{If\:there\:exists\:an}\:N\ge k\:\mathrm{so\:that\:for\:all}\:n\ge N,\:f\left(n\right)=a_n\:\mathrm{is\:positive,\:continuous\:and\:decreasing}

\mathrm{Then}\:\sum _{n=k}^{\infty }a_n\:\mathrm{and}\:\int _k^{\infty }f\left(x\right)dx\:\mathrm{either\:both\:converge\:or\:diverge}

\mathrm{Check\:if}\:f\left(n\right)\:\mathrm{is\:positive,\:continuous\:and\:decreasing}

\frac{1}{n^3-n^2}\mathrm{\:is\:positive,\:continuous\:and\:decreasing\:from\:}n=2

\int _2^{\infty \:}\frac{1}{n^3-n^2}dn=-\left(\frac{1}{2}-\ln \left(2\right)\right)

\mathrm{By\:the\:integral\:test\:criteria}

=\mathrm{converges}

\mathrm{By\:the\:comparison\:test}

=\mathrm{converges}

\mathrm{Hence\:}\Rightarrow \mathrm{converges}-\mathrm{converges}

=\boxed{\mathrm{converges}}

Add a comment
Know the answer?
Add Answer to:
5. Use the Limit Comparison Test to determine if the series converges or diverges. n-2 Σ3...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT