Question

A long solenoid with 1500 turns per meter and radius 1.6 cm carries an oscillating current...

A long solenoid with 1500 turns per meter and radius 1.6 cm carries an oscillating current I = 6.0 sin 100πt, where I is in amperes and t is in seconds. What is the maximum value of the electric field induced at a radius r = 1.2 cm from the axis of the solenoid.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

As you may know that SE dł= - da dt where; Po = B. And magnetic field due to solenoid is B = Mon I Given n = 1500 R=1.6cm = 1Therefore, E sal = -d [(Mon I) (TT)] dt ->) E (250) = - Montre d [6 Sin (loot)] It =) = unr x 6 cos (100TA) x 1007 2 Marimum

Add a comment
Know the answer?
Add Answer to:
A long solenoid with 1500 turns per meter and radius 1.6 cm carries an oscillating current...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A long solenoid has n = 380 turns per meter and carries a current given by...

    A long solenoid has n = 380 turns per meter and carries a current given by I = 34.0(1 − e−1.60t ), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (see figure below). What emf is induced in the coil by the changing current? (Use the...

  • A long, thin solenoid has 870 turns per meter and radius 2.00 cm . The current...

    A long, thin solenoid has 870 turns per meter and radius 2.00 cm . The current in the solenoid is increasing at a uniform rate of 59.0 A/s . What is the magnitude of the induced electric field at a point 0.450 cm from the axis of the solenoid? What is the magnitude of the induced electric field at a point 1.40 cm from the axis of the solenoid?

  • A long, thin solenoid has 930 turns per meter and radius 2.90 cm . The current...

    A long, thin solenoid has 930 turns per meter and radius 2.90 cm . The current in the solenoid is increasing at a uniform rate of 63.0 A/s . Part A What is the magnitude of the induced electric field at a point 0.520 cm from the axis of the solenoid? Part B What is the magnitude of the induced electric field at a point 1.10 cm from the axis of the solenoid?

  • Constants A long, thin solenoid has 800 turns per meter and radius 2.50 cm. The current...

    Constants A long, thin solenoid has 800 turns per meter and radius 2.50 cm. The current in the solenoid is increasing at a uniform rate of 42.0 A/s . What is the magnitude of the induced electric field at a point near the center of the solenoid? What is the magnitude of the induced electric field at a point 0.500 cm from the axis of the solenoid? What is the magnitude of the induced electric field at a point 1.00...

  • A long solenoid has n=410 turns per meter and carries a current given by t=31.0(1-e-1.60t)

    A long solenoid has n=410 turns per meter and carries a current given by t=31.0(1-e-1.60t), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R=6.00 cm and consists of a total of N=250 tums of fine wire (see figure below). What emf is induced in the coll by the changing current? (Use the following as necessary: t. Assume ε is in mV and t...

  • A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...

    A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00 103 turns/meter (see figure below). The current in the solenoid changes as I = 2.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time.

  • A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.70 cm

    A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 1.70 cm and 1.00 × 10³ turns/meter (see figure below). The current in the solenoid changes as I=5.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time.ɛ= _______ 

  • A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.30...

    A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.30 cm and 1.00 times 10^3 turns/meter (see figure below). The current in the solenoid changes as I = 8.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time sigma =

  • A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.50...

    A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.50 cm and 1.00x 103 turns/meter (see figure below). The current in the solenoid changes as I -5.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. 15-turn coil Need Help? RedtWatch

  • A long solenoid of radius R 10 cm has n 100 turns/cm and carries a time-varying...

    A long solenoid of radius R 10 cm has n 100 turns/cm and carries a time-varying current that varies sinusoidally as IImax cos (2d), where Imax = 10 A is the maximum current andf-60 Hz is the frequency of the alternating current source. What is the maximum magnitude of the induced electric field inside the solenoid, a distance , 1.3 cm from its axis? Path of integration

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT