Question

Water at T = 30°C flows through the 400-mm-diameter concrete pipe from the reservoir at A to the one at B. Determine the flowmn=3.14

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given T= 300 l v. 0.801x10-6m/). d 0.4 m L = 10om e:0.8 mm = 0.8 X1903 m. TA- Zo = 3.14 +15= 18.14m. ) To find flow rate (Q)i hf 0.0234X100 Q? 1201 (0.4) ilhg=18.8930² put everything in een o ... Palm Ра Parm (7-958412 to+ ZA-ZB P9 18.8930? 2x9.81 2

Add a comment
Know the answer?
Add Answer to:
mn=3.14 Water at T = 30°C flows through the 400-mm-diameter concrete pipe from the reservoir at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 24.) (2) point Water at T = 30°C flows through the 400-mm-diameter concrete pipe from the...

    24.) (2) point Water at T = 30°C flows through the 400-mm-diameter concrete pipe from the reservoir at A to the one at B. Determine the flow. The length of the concrete pipe is 100 m. The roughness of the concrete pipe is e = 0.8 mm. А +15 m B

  • Water flows from left reservoir to right reservoir in a 5 cm diameter pipe system as...

    Water flows from left reservoir to right reservoir in a 5 cm diameter pipe system as shown in the figure. The pipe is made out oftast iron which has a sand roughness of 0.26 mm. Discharge in the pipe system is given as 0.006 m3/s. Dynamic viscosity of water is 1.3 x 103 kg/m.s. Density of water is 1000 kg/m3 Flow in the pipe is ? water 9 m 17 4 m 80 m Laminar Turbulent Transition None of the...

  • Water flows from left reservoir to right reservoir in a 5 cm diameter pipe system as...

    Water flows from left reservoir to right reservoir in a 5 cm diameter pipe system as shown in the figure. The pipe is made out of cast iron which has a sand roughness of 0.26 mm Discharge in the pipe system is given as 0.006 m/s. Dynamic viscosity of water is 1.3 x 103 kg/ms. Density of water is 1000 kg/m2 Determine the friction factor? water 9 m 4 m 80 m 0.011 0.021 0.031 0.041

  • (b) Water flows under gravity between two reservoirs through a pipe of length 5000m. The diameter of the pipe is 0.2 m...

    (b) Water flows under gravity between two reservoirs through a pipe of length 5000m. The diameter of the pipe is 0.2 m and the roughness size is 0.04 mm. The water levels in the two reservoirs are maintained with a difference of 50 m. Determine the discharge through the pipe. Neglect all minor losses. Use the attached Moody diagram for estimation of friction factor. (10 marks) (c) In (b), now include entry loss at the upper reservoir with loss coefficient...

  • 5 points Water flows from left reservoir to right reservoir in a 5 cm diameter pipe...

    5 points Water flows from left reservoir to right reservoir in a 5 cm diameter pipe system as shown in the figure. The pipe is made out of cast iron which has a sand roughness of 0.26 mm. Discharge in the pipe system is given as 0.006 m/s. Dynamic viscosity of water is 1.3 x 103 kg/m.s. Density of water is 1000 kg/m Determine the friction factor? water 9 m 4 m 80 m 0.011 0.021 O 0.031 0.041

  • 35. (a) A reservoir A discharges water to a lower reservoir B through a 3600 m long pipe of diameter 600 mm. The flow i...

    35. (a) A reservoir A discharges water to a lower reservoir B through a 3600 m long pipe of diameter 600 mm. The flow is due to gravity and the difference in surface water levels in A and B is 13 m. Reservoir A is now required to supply water also to a third reservoir C, the water surface of which is 15 m below that of A. The discharge to C is to be made from a 1200 m...

  • Q3 (40 pts): Water is pumped through a 60-m-long, 0.3-m-diameter pipe from a lower reservoir to...

    Q3 (40 pts): Water is pumped through a 60-m-long, 0.3-m-diameter pipe from a lower reservoir to a higher reservoir, which has a water surface 10 m above the lower one. When the pump adds 40 kW to the water the flowrate is 0.20 m/s. Assume the following coefficients of minor losses: • Entrance: Kentrance = 0.5 Exit: Kexit = 1 Each elbow: Kelbow = 1.5 • Valve: K= 6 Part A (20 pts) Determine the pipe roughness ε. Part B...

  • Water (p=998kg/m^3, u=0.001Pa*s) flows from reservoir A to reservoir B through the piping system shown. Each...

    Water (p=998kg/m^3, u=0.001Pa*s) flows from reservoir A to reservoir B through the piping system shown. Each elbow has a minor loss coefficient of 1.2. Each valve has a minor loss coefficient of 3.2. The entrance and exit are both sharp edged. Determine the flow rate L/min. You now need to modify the piping system to increase the flow rate to 100L/min by reducing the length of the 25mm pipe. What must new length of the 25mm pipe be? 86. Water...

  • (b) Water flows under gravity through a pipeline connecting two reservoirs as shown in Figure 2....

    (b) Water flows under gravity through a pipeline connecting two reservoirs as shown in Figure 2. The pipeline consists of 2 km of pipe diameter 400 mm and sand roughness equivalent 0.03 mm followed by an abrupt change to 3 km of 500 mm diameter pipe of sand roughness equivalent 0.08 mm. The pipe discharges as a free jet into a reservoir. The difference in elevation between the water surface of the upstream reservoir and the discharging jet is 21...

  • A 150-mm-diameter galvanized iron pipe is used to transport water at T = 30∘C with a...

    A 150-mm-diameter galvanized iron pipe is used to transport water at T = 30∘C with a velocity of 1.5 m/s. Determine the pressure drop over the 15-m length of the pipe. Problem 10.28 A 150-mm-diameter galvanized iron pipe is used to transport water at T 30° C with a velocity of 1.5 m/s. Use the equation-=-1.8 log Figure 1) Determine the pressure drop over the 15-m length of the pipe. Express your answer to three significant figures and Use the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT