Question

The wave function for a standing wave on a string is described by y(x, t) = 0.023 sin(4x) cos (591), where y and x are in met

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The wave function for a standing wave on a string is described by y(x, t) =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.021 sin(4x) cos (56át), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m Ymax = m Vmax = m/s (b) x = 0.25 m Ymax = Vmax = m m/s (c) x = 0.30 m Ymax = Vmax =...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.016 sin(4πx) cos (57πt), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m ymax =  m vmax =  m/s (b) x = 0.25 m ymax =  m vmax =  m/s (c) x = 0.30 m ymax =  m vmax =  m/s (d) x = 0.50...

  • NOTES ASK YOUR TEACHER PRACTIC The wae functie for a standing wave on a string is...

    NOTES ASK YOUR TEACHER PRACTIC The wae functie for a standing wave on a string is described by (x, t) - 0.017 sid(4x) cos(52nt). where andre in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x 0.10 m Yma m/s m x = 0.25 m x = m m/s (C) x 0.30 m Ymax m m/s (d) x 0.50 m max max m m/s

  • A wave on a string is described by y(x,t)=( 2.0 cm )×cos[2π(x/( 3.6 m )+t/( 0.20...

    A wave on a string is described by y(x,t)=( 2.0 cm )×cos[2π(x/( 3.6 m )+t/( 0.20 s ))] , where x is in m and t is in s. A)In what direction is this wave traveling? Negative B)What is the wave speed? 18 m/s C)What is the wave frequency? Hz D)What is the wave length? m E)At t = 0.50 s , what is the displacement of the string at x = 0.30 m ? cm

  • A transverse wave on a string is described by the wave function y(x, t) = 0.334...

    A transverse wave on a string is described by the wave function y(x, t) = 0.334 sin(1.60x + 86.0t) where x and y are in meters and t is in seconds. Consider the element of the string at x = 0. (a) What is the time interval between the first two instants when this element has a position of y = 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?

  • Two transverse sinusoidal waves combining in a medium are described by the wave functions y_1 =...

    Two transverse sinusoidal waves combining in a medium are described by the wave functions y_1 = 1.00 sin pi (x + 0.900t) y_2 = 1.00 sin pi(x - 0.900t) where x, y_1, and y_2 are in centimeters and t is in seconds. Determine the maximum transverse position of an element of the medium at the following positions. x = 0.240 cm |y max| = x = 0.340 cm |ymax| = x = 1.40 cm |ymax| = Find the three smallest...

  • Question: A standing wave is established in a string and can be described by the equation:...

    Question: A standing wave is established in a string and can be described by the equation: y(2, t) = 4.18 sin(14.4x) cos(980t) cm. Where z is in m and t is in s. Part 1) What is the position of the first anti-node? m Part 2) What is the maximum speed of a piece of string at x = 0.309 m? Umax = m/s Part 3) This standing wave is formed from an input wave travelling to the right interfering...

  • The equation of a transverse wave traveling along a string is y = 0.419 sin(0.265x -...

    The equation of a transverse wave traveling along a string is y = 0.419 sin(0.265x - 18.90), in which x and y are in meters and t is in seconds. (a) What is the displacement y at x = 6.36 m, t = 0.582 s? (Hint: Displacement is a vector quantity. Pay attention to the sign.) -.0442 m(b) Choose an equation of a wave that, when added to the given one, would produce standing waves on the string. O V'(x,t)...

  • The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a ver...

    The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane y1(x, t) = (6.30 mm) sin(6.50TX . 420 Y2(x, t) (6.30 mm) sin(650TX + 42urt), with x in meters and t in seconds. An anitinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?...

  • A transverse wave on a string is described by the following wave function. Y = 0.095...

    A transverse wave on a string is described by the following wave function. Y = 0.095 sin (1x + 5nt) where x and y are in meters and t is in seconds. (a) Determine the transverse speed at t = 0.300 s for an element of the string located at x = 1.30 m m/s (b) Determine the transverse acceleration at t = 0.300 s for an element of the string located at x + 1.30 m. m/s2 (c) What...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT