Question

An Atwood machine consists of two masses, mA= 63 kg and mB = 71 kg ,...

An Atwood machine consists of two masses, mA= 63 kg and mB = 71 kg , connected by a massless inelastic cord that passes over a pulley free to rotate (Figure 1). The pulley is a solid cylinder of radius R = 0.40 mm and mass 5.0 kg. [Hint: The tensions FTA and FTB are not equal.]

Acceleration of each mass is 0.57 m/s2

What % error would be made if the moment of inertia of the pulley is ignored?

Express your answer using two significant figures.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

From the data (my >ma),the net force acting on ma & mois, m;& -Ti = mga 7 - m48 = ma Adding the equations from one to another

Add a comment
Know the answer?
Add Answer to:
An Atwood machine consists of two masses, mA= 63 kg and mB = 71 kg ,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. An Atwood machine consists of two masses, mA 4.3 kg and mB 9.7 kg, connected...

    3. An Atwood machine consists of two masses, mA 4.3 kg and mB 9.7 kg, connected by a cord that passes over a pulley free to rotate about a fixed axis. The pulley is a hoop of radius Ro 0.75 m and mass M-3.2 kg. mB Im If mB is initially h-2.4 m above the table and released from rest, with what speed will it hit the table? (Hint: Use energy considerations and note that mass ma will go up...

  • An Atwood machine consists of two masses M_{a} = 7.0 kg and M_{b} = 8.2 kg,...

    An Atwood machine consists of two masses M_{a} = 7.0 kg and M_{b} = 8.2 kg, connected by a cord that passes over a pulley free to rotate about a fixed axis. The pulley is a solid cylinder of radius R_{0} = 0.40 m and mass M = 0.80 kg. The moment of inertia of the pulley with respect to an axis around which the pulley is rotating in this problem is I = M R_{0}^{2}/2 Find the acceleration (magnitude...

  • An Atwood's machine consists of two masses, mi and m2, which are connected by a massless...

    An Atwood's machine consists of two masses, mi and m2, which are connected by a massless inelastic cord that passes over a pulley. If the pulley has radius R and moment of inertia I about its axle, determine the acceleration of the masses mi and m2, and compare to the situation in which the moment of inertia of the pulley is ignored. [Hint: The tensions FTI and FT2 are not necessarily equal.] T2

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley Assume that the rope and pulley are massless, and that there is no friction in the pulley. If the masses have the values m 19.7 kg and m2 12.7 kg, find the magnitude of their acceleration a and the tension T in the rope. Use g 9.81 m/s2. Number a- m/s Number

  • A device known as Atwood’s machine consists of two masses hanging from the ends of a...

    A device known as Atwood’s machine consists of two masses hanging from the ends of a vertical rope that passes over a pulley. Assume the rope and pulley are massless and there is no friction in the pulley. Mass mA is greater than mass me. Find expressions for the magnitude of their acceleration, a, and the tension in the rope, T. Express your answers in terms of the masses and g, the acceleration due to gravity.

  • Two masses, mA = 34.0 kg and mB = 40.0 kg , are connected by a...

    Two masses, mA = 34.0 kg and mB = 40.0 kg , are connected by a rope that hangs over a pulley (as in the figure (Figure 1)). The center of the pulley is hollowed out so that you may assume all the mass of the pulley is in the rim. The radius of the pulley is 0.381 m and the mass of the pulley is 3.10 kg . Initially mA is on the ground and mB rests 2.50 m...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. Assume that the rope and pulley are massless, and that there is no friction in the pulley. If the masses have the values m1 = 20.3 kg and m2 = 12.5 kg, find the magnitude of their acceleration a and the tension T in the rope. Use g = 9.81 m/s2. 2 answers in the rope. Use g 9.81 m/s Number...

  • Two masses, Ma= 35.0kg and Mb = 40.0 kg, are connected by a rope that hangs...

    Two masses, Ma= 35.0kg and Mb = 40.0 kg, are connected by a rope that hangs over a pulley (as in the figure ). The pulley is a uniform cylinder of radius 0.381m and mass 3.4kg . Initially Ma is on the ground and Mb rests 2.3m above the ground. If the system is released, use conservation of energy to determine the speed of just before it strikes the ground. Assume the pulley bearing is frictionless.

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 4.53 kg and radius r = 0.450 m. The hanging masses are mu = 20.5 kg and mr = 12.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T, and Tr, respectively. mi m/s2 TL...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mı = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and TR respectively. my m/s2 N...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT