Question

(1 point) Solve the boundary value problem by using the Laplace transform az w &w 16- dx2 x > 0, t> 0 at2 w(0,t) = 0, lim w(xHint: the following formulas might be helpful: (1) If C-(F) = f(t) then L-1 -(-) = = tf(t). (2) 2as (s2 – aề)2 d ds 52 – a2 (

0 0
Add a comment Improve this question Transcribed image text
Answer #1

dw at2 on care? Taking hoplace Transform s²w-sal(o) - W (0) = 1622 da² sw-sxoro = 162²W both side we have L(w). Dne 2 2²W/94)lim Welfart = lin L(w (fy t)) my hapo, s) (font)) = o. maye - s/ym Ways) = G.ee the hilayo) = 9+G 22,= GAG Moyo Again hiffasDate: & at me 2 e (5+12 2 -s/um W/4 3) = L(w/ry t)) (Stig? w/ryt) = l / 2 e 96) e S4112 Scanned with CamScanner

Add a comment
Know the answer?
Add Answer to:
(1 point) Solve the boundary value problem by using the Laplace transform az w &w 16-...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1 point) Solve the boundary value problem by using the Laplace transform: 4 ²w дх2 d²w...

    (1 point) Solve the boundary value problem by using the Laplace transform: 4 ²w дх2 d²w at2 ? x > 0, t> 0 w(0,t) = sin(8t), lim w(x, t) = 0, t> 0, X00 W(x,0) = 0, dw -(x,0) = 0, x > 0, дt First take the Laplace transform of the partial differential equation. Let W be the Laplace transform of w. Then W satisfies the ordinary differential equation W" = subject to W(0) = and limx→ W(x) =...

  • (1 point) Solve the boundary value problem by using the Laplace transform 22 w ²w +...

    (1 point) Solve the boundary value problem by using the Laplace transform 22 w ²w + sin(6ax) sin(16t) = 0 < x < 1, t> 0 дх2 dt2 w(0,t) = 0, w(1,t) = 0, t> 0, w(x,0) = 0, dw -(x,0) = 0, 0 < x < 1. dt First take the Laplace transform of the partial differential equation. Let W be the Laplace transform of w. Then W satisfies the ordinary differential equation W" = subject to W(0) =...

  • 2. Solve the following partial differential equation using Laplace transform. Express the solution of u in...

    2. Solve the following partial differential equation using Laplace transform. Express the solution of u in terms of t&x. alu at2 02u c2 2x2 u(x,0) = 0 u(0,t) = f(t) ou = 0 == Ot=0 lim u(x, t) = 0

  • (t)= . Use the Laplace transform to solve the following initial value problem: 44" + 2y...

    (t)= . Use the Laplace transform to solve the following initial value problem: 44" + 2y + 18y = 3 cos(3+), y(0) = 0, y(0) = 0. a. First, take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation and then solve for L{y(t)}. Do not perform partial fraction decomposition since we will write the solution in terms of a convolution integral. L{y(t)}(s) b. Express the solution y(t) in terms of a...

  • where h is the Use the Laplace transform to solve the following initial value problem: y"+y...

    where h is the Use the Laplace transform to solve the following initial value problem: y"+y + 2y = h(t – 5), y(0) = 2, y(0) = -1, Heaviside function. In the following parts, use h(t – c) for the shifted Heaviside function he(t) when necessary. a. First, take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation and then solve for L{y(t)}. L{y(t)}(s) = b. Express the solution y(t) as the...

  • Use the Laplace transform to solve the following initial value problem: 44" + 2y + 18y...

    Use the Laplace transform to solve the following initial value problem: 44" + 2y + 18y = 3 cos(3t), y(0) = 0, y(0) = 0. a. First, take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation and then solve for L{y(t)}. Do not perform partial fraction decomposition since we will write the solution in terms of a convolution integral. 3s L{y(t)}(s) = (452 + 25 +2s + 18)(52+9) b. Express the...

  • please help (1 point) Use the Laplace transform to solve the following initial value problem: y"...

    please help (1 point) Use the Laplace transform to solve the following initial value problem: y" + y = 0, y(0) = 1, y'(0) = 1 (1) First, using Y for the Laplace transform of y(t), i.e., Y = L(y(0), find the equation you get by taking the Laplace transform of the differential equation to obtain (2) Next solve for Y = (3) Finally apply the inverse Laplace transform to find y(t) y(t) =

  • (1 point) Use the Laplace transform to solve the following initial value problem: y" + 6y'...

    (1 point) Use the Laplace transform to solve the following initial value problem: y" + 6y' - 16y = 0 y(0) = 3, y(0) = 1 First, using Y for the Laplace transform of y(t), i.e., Y = C{y(t)). find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) = and write the above answer in its partial fraction decomposition, Y(S) = Y(s) = A. where a <b Now by...

  • (1 point) Use the Laplace transform to solve the following initial value problem: y" + 3y...

    (1 point) Use the Laplace transform to solve the following initial value problem: y" + 3y = 0 y(0) = -1, y(0) = 7 First, using Y for the Laplace transform of y(t), i.e.. Y = C{y(t)} find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y (8) and write the above answer in its partial fraction decomposition, Y(s) Y(8) = B b where a <b sta !! Now by...

  • solve k2 Solve the following partial differential equation by Laplace transform: д?у ду dx2 at ,...

    solve k2 Solve the following partial differential equation by Laplace transform: д?у ду dx2 at , with the initial and boundary conditions: t = 0, y = A x = 0, y = B[u(t) – uſt - to)] x = 0, y = 1 5 Where, k, A, B and to are constants

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT