Question

A car has a mass of 1850 kg and travels down a 15 degree incline at...

A car has a mass of 1850 kg and travels down a 15 degree incline at a constant speed of 100 km/hr. The car rolls on tires that have a radius of 44.95 cm, which roll without slipping. What is the torque being provided by each of the Jeep's brakes? (Assume friction is evenly distributed) and what is the power of each of the breaks?Is mechanical energy conserved?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m= 1850kg co Soo 1850kg, 0=15° V= 100kml for loox 5 I onls 18mis R= 44.95cm- 0.4495m N=mgcose fra mgsino ngcose since velocit

Add a comment
Know the answer?
Add Answer to:
A car has a mass of 1850 kg and travels down a 15 degree incline at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car (m = 2000 kg) is traveling down a 15 degree incline at 65 m/s....

    A car (m = 2000 kg) is traveling down a 15 degree incline at 65 m/s. The driver slams on the breaks causing the wheels to lock. Omega_x = 0.3. How far S will the tires skid on the road? If the driver can skid only 10 m before hitting another vehicle, how fast will the driver hit the other vehicle?

  • a vechicle is going down a hill with incline 15 degrees. vechicle mass is 1850kg with...

    a vechicle is going down a hill with incline 15 degrees. vechicle mass is 1850kg with constant speed 80km/h wheels on vechicle are 89.9 cm in diameter 1) find the torque of one of the brakes 2) find the power of each brake 3) is mechanical energy comserved while moving down

  • Learning Goal Part A-Time for the Car to Reach 100 km/h ? To apply the concepts...

    Learning Goal Part A-Time for the Car to Reach 100 km/h ? To apply the concepts of impulse and momentum to problems involving unknown forces, velocities, and times. Find the time it will take for the car to reach u 100 km/h from rest. A new rear-wheel drive automobile design is being tested and you have been asked to estimate its performance. The car without wheels (i.e., the body) has a mass of mc 1450 kg. The wheels (including tires)...

  • PHYS 117 W519-Fall 2019 Q11.2 A cylinder rolls, without slipping down an incline that has an...

    PHYS 117 W519-Fall 2019 Q11.2 A cylinder rolls, without slipping down an incline that has an angle of 15 degrees. The cylinder has a mass of and 0.75 kg a radius of 5.0 cm. a) Which of the following forces exert(s) a torque on the cylinder about its center? A) The weight of the cylinder B) The normal force exerted by the ramp C) The friction force exerted by the ramp D) Other forces: Explain your answer with a free-body...

  • Two spheres of equal mass M and equal radius R roll down an inclined plane as...

    Two spheres of equal mass M and equal radius R roll down an inclined plane as shown in the figure. One sphere is solid and the other is a hollow spherical shell. The plane makes an angle ? with respect to the horizontal. The spheres are released simultaneously from rest at the top of the inclined plane and they each roll down the incline without slipping. The total distance each sphere rolls down the ramp (the hypotenuse) is d. There...

  • < Problem Assignment No. 8 Principle of Impulse and Momentum 6 of 20 Learning Goal Part...

    < Problem Assignment No. 8 Principle of Impulse and Momentum 6 of 20 Learning Goal Part A Time for the Car to Reach 100 km/h To apply the concepts of impulse and momentum to problems involving unknown forces, velocities, and times Find the time it will take for the car to reach v 100 km/h from rest. Express your answer to three significant figures in seconds A new rear-wheel drive automobile design is being tested and you have been asked...

  • A toy car of mass 0.35 kg travels along a circular banked road, with banking angle...

    A toy car of mass 0.35 kg travels along a circular banked road, with banking angle 30°. The circle has radius 0.80 m. Sarah wants to make the car move as fast as possible, but if it goes too fast, it slips off the road. Therefore, Sarah cuts a 0.80- meter piece of string, attaches one end to the car, and attaches the other end to a nail stuck in the center of the circle. Unfortunately, the string is thin...

  • The car shown in the figure has mass m(this includes the mass of the wheels). The wheels have radius r, mass mw, and m...

    The car shown in the figure has mass m(this includes the mass of the wheels). The wheels have radius r, mass mw, and moment of inertia I=kmwr2. Assume that the axles apply the same torque ? to all four wheels. For simplicity, also assume that the weight is distributed uniformly so that all the wheels experience the same normal reaction from the ground, and so the same frictional force. Part A If there is no slipping, a frictional force must...

  • answer all questions pleaseeee Problem# 5: A box with mass 12.0 kg moves on a ramp that is inclined at an ang...

    answer all questions pleaseeee Problem# 5: A box with mass 12.0 kg moves on a ramp that is inclined at an angle of 60.0 above the horizontal. The coefficient of kinetic friction between the box and the ramp surface is u-0.380, a) Draw a free body diagram b) Express all required equations c) Calculate the magnitude of the acceleration of the box if you push on the box with a constant force F- 150.0 N that is parallel to the...

  • 1. A pole is held vertically by attaching wires at a height of 13.4 m above...

    1. A pole is held vertically by attaching wires at a height of 13.4 m above the ground. The other end of each wire is anchored in the ground at a distance of 9.54 m from the base of the pole. The pole makes a right angle with the ground. What is the length of each wire? 2. A bug crawls 2.25 m along the base of a wall. Upon reaching a corner, the bug's direction of travel changes from...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT