Question











A bridge oscillates too much during high winds. The bridge is modeled as a spring with simple harmonic motion. The mass of th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

A bridge oscillates too much dering high words, 5*108 ug K= 4.9800 N/m b= 3.13 x 10 kg is moss M= 5 i egnation of motion F=-K

Add a comment
Know the answer?
Add Answer to:
A bridge oscillates too much during high winds. The bridge is modeled as a spring with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A bridge oscillates too much during high winds. The bridge is modeled as a spring with...

    A bridge oscillates too much during high winds. The bridge is modeled as a spring with simple harmonic motion. The mass of the bridge is 5.0x10 kg and its spring constant is 4.9x107 N/m. The peak vertical displacement of the bridge is 1.0 m from its equilibrium position. In order to reduce this motion, dampers are added to the bridge with a damping coefficient of 3.13x107 kg/s. a) Derive, but do not solve, the equation of motion which describes the...

  • A 9.10 kg object oscillates at the end of a vertical spring that has a spring...

    A 9.10 kg object oscillates at the end of a vertical spring that has a spring constant of 2.25 times 10^4 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N s/m. Calculate the frequency of the dampened oscillation. By what percentage does the amplitude of the oscillation decrease in each cycle? Find the time interval that elapses while the energy of the system drops to 3.00% of its initial value.

  • A compact object with a mass of 4.80 kg oscillates at the end of a vertical...

    A compact object with a mass of 4.80 kg oscillates at the end of a vertical spring with a spring constant of 1.60 ✕ 104 N/m. The motion is damped by air resistance, and the damping coefficient is b = 3.00 N · s/m. (a) What is the frequency (in Hz) of the damped oscillation?____________ (b) By what percentage does the amplitude of the oscillation decrease in each cycle? _____________ % (c) Over what time interval (in s) does the...

  • A metal block with a mass of 8.80 kg oscillates at the end of a vertical...

    A metal block with a mass of 8.80 kg oscillates at the end of a vertical spring with a spring constant of 2.20 x 104 N/m. The motion is damped by air resistance, and the damping coefficient is b = 3.00 N. s/m. (a) What is the frequency (in Hz) of the damped oscillation? THz (b) By what percentage does the amplitude of the oscillation decrease in each cycle? % c) Over what time interval (in s) does the energy...

  • A 0.50 kg mass oscillates in simple harmonic motion on a spring with a spring constant...

    A 0.50 kg mass oscillates in simple harmonic motion on a spring with a spring constant of 210 N/m . Part A What is the period of the oscillation? Part B What is the frequency of the oscillation?

  • Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two per...

    Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two periods for the case when Wn-2rad/s, 괴,-1mm, and eto =-v/5mm/s. 2. (introduction) The approximation sin θ ะ θ is reasonable for θ < 10°. If a pendulum of length 0.5m, has an initial position of 0()0, what is the maximum value of the initial angular velocity that can be given to the pendulum without violating this smll angle approximation? 3. (harmonic...

  • ineers can determine properties of a structure that is modeled as damped spring oscillator-such as a...

    ineers can determine properties of a structure that is modeled as damped spring oscillator-such as a bridge-by applying a driving force to it. A weakly damped spring oscillator of mass 0.242 kg is driven by a sinusoidal force at the oscillator's resonance frequency of 34.0 Hz. Find the value of the spring constant Number N/ m The amplitude of the driving force is 0.471 N and the amplitude of the oscillator's steady-state motion in response to this driving force is...

  • 2. Following problem 1, the same spring-mass is oscillating, but the friction is involved. The spring-mass starts oscillating at the top so that its displacement function is x Ae-yt cos(wt)...

    2. Following problem 1, the same spring-mass is oscillating, but the friction is involved. The spring-mass starts oscillating at the top so that its displacement function is x Ae-yt cos(wt)t is observed that after 5 oscillation, the amplitude of oscillations has dropped to three-quarter (three-fourth) of its initial value. (a) 2 pts] Estimate the value ofy. Also, how long does it take the amplitude to drop to one-quarter of initial value? 0 Co [2 pts] Estimate the value of damping...

  • 14.4 A 3 kg mass oscillates on the end of a spring with an amplitude of...

    14.4 A 3 kg mass oscillates on the end of a spring with an amplitude of 32 cm. a) If the maximum acceleration of the spring is 43.3 m/s2 , what is the spring constant of the spring? b) What is the frequency of the oscillation? c) If the spring was released at t = 0 s, how many complete oscillations occur in the first 10 s?

  • A mass m = 3 kg is attached to a spring with spring constant k =...

    A mass m = 3 kg is attached to a spring with spring constant k = 3 N/m and oscillates with simple harmonic motion along the x-axis with an amplitude A = 0.10 m. (a) What is the angular frequency  of this oscillation? (b) What is the period T and the frequency f of the oscillation? (c) If the phase constant  = 0, write down expressions for the displacement, velocity and acceleration of the mass as a function...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT