Question

A student heats 84.17 mL of water to 95.27°C using a hot plate. The heated water is added to a calorimeter containing 73.92 m
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A student heats 84.17 mL of water to 95.27°C using a hot plate. The heated water...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A student heats 84.17 mL of water to 95.27°C using a hot plate. The heated water...

    A student heats 84.17 mL of water to 95.27°C using a hot plate. The heated water is added to a calorimeter containing 73.92 mL of cold water. The water temperature in the calorimeter rises from J 2.15°C to 39.32°C. The specific heat capacity of water is 4.184 and the density of water is g•°C 1.00 mL Assuming that heat was transferred from the hot water to the cold water and the calorimeter, determine the heat capacity of the calorimeter. Heat...

  • A 16.260g piece of metal was heated in a hot water bath at . The hot...

    A 16.260g piece of metal was heated in a hot water bath at . The hot metal was then transferred to a calorimeter containing 50.00 mL of water (d of H2O= 1.00 g/mL). From the time-temperature plot, the initial and final temperature for the water were determined to be and , respectively. A) calculate heat (q) gained by the calorimeter and water assuming Ccal= , qH2O= (4.184 J/gC)(mwater)() and qcal=Ccal. 95.5°C 23.76°C 26.18°C 21.0J/ C T We were unable to...

  • 3. A 32.520 g piece of unknown metal was heated in a hot water bath at 99.80°C. The hot metal was then transferred...

    3. A 32.520 g piece of unknown metal was heated in a hot water bath at 99.80°C. The hot metal was then transferred to a coffee-cup calorimeter containing 100.0 mL of water. Time-Temperature data was collected and plotted. From the plot, the initial and final tem- peratures for the water were determined to be T 23.76°C and T 26.18°C. and qse (Assume C 21.0 J°C.) a. Calculate cal b. Calculate qnetal Calculate cmetal d. Calculate the molar mass for the...

  • A volume of water was heated to 82.86C and immediately added to 50.31 mL of water...

    A volume of water was heated to 82.86C and immediately added to 50.31 mL of water at 22:45 °C contained within a coffee cup calorimeter. The final temperature of the mixture was 37,08°C. The final volume of water inside the calorimeter was 94.33 mL. Calculate the following: Note: Heat capacity a. volume of hot water added is 4.18 *Consider sig fig b. masses of hot and cold water (density of water = 1,00 g/mL) c. changes in temperature (AT) of...

  • 1. A volume of water was heated to 83.90 °C and immediately added to 48.11 mL...

    1. A volume of water was heated to 83.90 °C and immediately added to 48.11 mL of water at 23.98 °C contained within a coffee cup calorimeter. The final temperature of the mixture was 40.86 °C. The final volume of water inside the calorimeter was 90.45 mL. Assuming that them heat capacity of the solution is 4.18 J/g/°C, calculate the following: a. The volume of hot water added ml b. The mass of hot water (dwater = 1.00 g/mL) c....

  • 1. A volume of water was heated to 81.76 °C and immediately added to 48.80 mL of water at 20.55 °C contained within a co...

    1. A volume of water was heated to 81.76 °C and immediately added to 48.80 mL of water at 20.55 °C contained within a coffee cup calorimeter. The final temperature of the mixture was 37.73 °C. The final volume of water inside the calorimeter was 92.03 mL. Assuming that them heat capacity of the solution is 4.18 J/g/°C, calculate the following: a. The volume of hot water added ml b. The mass of hot water (dwater = 1.00 g/mL) g...

  • Useful equations and constants: heat lost/gained = (Volume (Density)(AT)(specific heat capacity) (heat lost by hot...

    Useful equations and constants: heat lost/gained = (Volume (Density)(AT)(specific heat capacity) (heat lost by hot water) - Cheat gained by cold water) calorimeter constant = Density co = 1.00 g/mL Specific heat capacity (water) - 4.184 J/g °C 1. What is thermochemistry? (2 pts) 2. A student adds 5.00 mL of cold water to 5.00 mL of hot water in a test tube surrounded by a Styrofoam installation (ie, calorimeter). The initial temperature of the cold water was 15.26 °C,...

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.39°C to 29.10°C. The specific heat capacity of copper metal and water are J J 0.387 and 4.184 respectively. - 9 Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the calorimeter....

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.47°C to 29.10°C. The specific heat capacity of copper metal and water are J J 0.387 and 4.184 respectively. gr°C g. °C Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the...

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.31°C to 29.10°C. The specific heat capacity of copper metal and water are 0.387 and 4.184, respectively. Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the calorimeter. Heat capacity of calorimeter...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT