Question

be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are 19.7 kg and mp = 11.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Pulley Mess Busten taken into Consideration) mp=5.13 5. 13 kg rp = 0.28m / I TR m. Ta MR 19.7kg mig V My (m2) me mag (as mu>-R = > TOP - TR P = 1 mp ropa 2 But =) PL - PR p = Impre a x= a Yp -) i - TR = 1/2 mpal موا Putting of in get (mq- ma) – (meya = 9.8 (19.7-11-7) (19.7+11.7+ 1 x 5.13) 78.4 33.965 = ) az 2.308 m/s² 8 3² m - ?ub = ? ma m (g-a) 19.71 9. = 19. 9.8 - 2.30

Add a comment
Know the answer?
Add Answer to:
be approximated by a uniform disk with mass mp = 5.13 kg and radius rp =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mu = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T. and Tr , respectively. mu a=...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mı = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and TR respectively. my m/s2 N...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 5.13 kg and radius rp = 0.350 m. The hanging masses are m. = 19.7 kg and mx = 13.3 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and Tr, respectively. mL m/s2 a...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 6.13 kg and radius rp = 0.150 m. The hanging masses are mL = 21.1 kg and mR = 10.3 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti and TR, respectively. m "L a=...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m, = 5.53 kg and radius rp = 0.150 m. The hanging masses are m = 17.1 kg and mp = 12.1 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T and Tr, respectively. m m/s2 a...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp=6.33 kg and radius rp=0.250 m. The hanging masses are mL=21.1 kg and mR=14.1 kg.Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, TL and TR , respectively.

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 4.53 kg and radius r = 0.450 m. The hanging masses are mu = 20.5 kg and mr = 12.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T, and Tr, respectively. mi m/s2 TL...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley Assume that the rope and pulley are massless, and that there is no friction in the pulley. If the masses have the values m 19.7 kg and m2 12.7 kg, find the magnitude of their acceleration a and the tension T in the rope. Use g 9.81 m/s2. Number a- m/s Number

  • A certain pulley is a uniform disk of mass 2.7 kg and radius 0.25 m. A...

    A certain pulley is a uniform disk of mass 2.7 kg and radius 0.25 m. A rope applies a constant torque to the pulley, which is free to rotate without friction, resulting in an angular acceleration of 0.12 rad/s2. The pulley starts at rest at time t = 0 s. What is its rotational kinetic energy at t = 2.2 s?

  • Assume: The positive y direction is up. A pulley (in the form of a uniform disk)...

    Assume: The positive y direction is up. A pulley (in the form of a uniform disk) withmass 65 kg and a radius 11 cmis attached to the ceiling, in a uniform gravitational field, and rotates with no friction about its pivot. The acceleration of gravity is 9.8 m/s2 . These masses are connected by a massless inextensible cord. T1, T2, and T3 are magnitudes of the tensions. a)Determine the acceleration of the mass 23 kg. b)Determine the acceleration of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT