Question

A 3.50 kg mass is attached to a spring and set into motion horizontally along a...

A 3.50 kg mass is attached to a spring and set into motion horizontally along a frictionless track. At time t = 0.00 s, the mass passes through the equilibrium position (x = 0.00 m) moving to the left. At time t = 0.85 s, the mass reaches the left endpoint (x = - 0.16 m). a) Write an equation to describe the motion of the mass throughout time. [4] b) Find the spring constant, k. [2] c) Find the maximum speed of the mass. [2] d) At what time does the mass first experience the largest possible negative acceleration? [2]

0 0
Add a comment Improve this question Transcribed image text
Answer #1

mm x aris N=-0.16 x=0 Displacement for a for a SHM of spring is x (+) - Ao sin (wt+Q) Werd, A Amplitude 0.16 phase dingle. Gi

Add a comment
Know the answer?
Add Answer to:
A 3.50 kg mass is attached to a spring and set into motion horizontally along a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.82 kg mass is attached to the end of a spring and set into oscillation...

    A 0.82 kg mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass passes through the equilibrium position and the position of the mass at any time is shown in the drawing. Determine the following. amplitude A of the motion m angular frequency omega rad/s spring constant k N/m speed of the object at t=...

  • A 0.81-kg mass is attached to the end of a spring and set into oscillation on...

    A 0.81-kg mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass passes through the equilibrium position and the position of the mass at any time is shown in the drawing, x (m) 0.10 --- 04 16.0 -0.10 - - - - - - Determine the following. (a) amplitude A of the motion (b) angular...

  • A mass of 0.12 kg is attached to a spring and set into oscillation on a...

    A mass of 0.12 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.22 m)cos[(14 rad/s)t]. Determine the following. Figured out all parts except: (e) time it takes the mass to get to the position x = −0.10 m after it has been released

  • A 0.43 kg mass is attached to the end of a spring and set into oscillation...

    A 0.43 kg mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass passes through the equilibrium position and the position of the mass at any time is shown in the drawing. On a coordinate plane with a horizontal axis labeled t(s) and a vertical axis labeled x(m) there is one item, a curve that...

  • A mass of 0.24 kg is attached to a spring and set into oscillation on a...

    A mass of 0.24 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by 7. x()(0.46 m)cos (12 rad/s)r]. Determine the following. (a) Amplirude of oscillation for the oscillating mass. (b) Period of the oscillation for the oscillating mass. 523 (c) Force constant (spring constant) for the spring. (d) Position of the mass after it has been oscillating for one half a period. 1.Gon NG...

  • A mass rests on a frictionless surface and is attached to the end of a spring....

    A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring is stretched... I would appreciate to have a detailed explanation for the last one. Thank you in advance. A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring Is stretched. The mass Is then released, and It starts oscillating back and forth...

  • A mass of 0.28 kg is attached to a spring and set into oscillation on a...

    A mass of 0.28 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.34 m) cos((20 rad/st]. Determine the following (a) amplitude of oscillation for the oscillating mass (b) force constant for the spring N/m (c) position of the mass after it has been oscillating for one half a period (d) position of the mass one-third of a period after it has...

  • A mass of 0.38 kg is attached to a spring and set into oscillation on a...

    A mass of 0.38 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.20 m)cos((10 rad/st]. Determine the following. (a) amplitude of oscillation for the oscillating mass 0.20 (b) force constant for the spring 38 ✔ N/m (c) position of the mass after it has been oscillating for one half a period -20 m (d) position of the mass one-third of a...

  • A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15...

    A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the cart is released from rest at position x = 8 cm from the equilibrium position. (a) What is the frequency of the oscillations of the object? (b) Determine the maximum speed of the cart. (c) Find the maximum acceleration of the mass (d) How much total energy does this oscillating...

  • a mass of 0.5 kg is attached to a spring and set into oscillation on a...

    a mass of 0.5 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. the simple harmonic motion of the mass is described by x(t)= (0.5m)cos[(18 rad/s) t]. Determine the following: a. position of the mass after it has been oscillating for one half a period b. position of the mass one-third of a period after it has been released c. the time it takes to get to the position x= -0.1m after it has...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT