Question

QUESTIONS 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The given data in the question Medium 1 → R-bua Medium 2 → Water 70°C R-134a initial condition Pressure (Pii) = 1 MPn Tempera

300 kPa From the thermodynamic property table of steam at these condition Enthalpy Chiz) = 63.3 kJ / kg At exit the water con

you need to upload the =2 For the next 2 questions value of Since question 4 has all the relevant data provided, I am solv

Patm Pair h hg A A 2 h

We will equate the pressure at A-A plane in 1st and 2nd coulma of the manometer - At 1 st contrrsh at AA plane Pressme PAA Pa

Pair ( 1.205pm - 0.3% -0.2 0.3. – 0.2Pw) % Putting all the values Pair 156.303 X10? Pa 156 : 303 kPa Pair An If you have any

Add a comment
Know the answer?
Add Answer to:
QUESTIONS 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a...

    1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa and a temperature of 70 °C at a flow rate of 6 kg/min and exits at a temperature of 35 °C. Cooling water enters the condenser at 300 kPa pressure and 15 °C temperature and exits at 25 °C temperature. By neglecting pressure losses, Calculate; a) mass flow of cooling water b) the heat transfer from the refrigerant to the...

  • 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a...

    1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa and a temperature of 70 °C at a flow rate of 6 kg / min and exits at a temperature of 35 °C. Cooling water enters the condenser at 300 kPa pressure and 15 °C temperature and exits at 25 °C temperature. By neglecting pressure losses, Calculate; a) mass flow of cooling water b) the heat transfer from the refrigerant...

  • 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a...

    1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa and a temperature of 70 °C at a flow rate of 6 kg/min and exits at a temperature of 35 °C. Cooling water enters the condenser at 300 kPa pressure and 15 °C temperature and exits at 25 °C temperature. By neglecting pressure losses, Calculate; a) mass flow of cooling water b) the heat transfer from the refrigerant to the...

  • 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a...

    1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa and a temperature of 70 °C at a flow rate of 6 kg/min and exits at a temperature of 35 °C. Cooling water enters the condenser at 300 kPa pressure and 15 °C temperature and exits at 25 °C temperature. By neglecting pressure losses, Calculate; a) mass flow of cooling water b) the heat transfer from the refrigerant to the...

  • 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a...

    1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa and a temperature of 70°C at a flow rate of 6 kg/min and exits at a temperature of 35 °C. Cooling water enters the condenser at 300 kPa pressure and 15 °C temperature and exits at 25 °C temperature. By neglecting pressure losses, Calculate; a) mass flow of cooling water b) the heat transfer from the refrigerant to the water.

  • A two-liquid pressure gauge is connected to a tank filled with water. In the environment where...

    A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg / m³, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag h1 h3 su h2 civa

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg / m?, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag h1 h3 h2 civa

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • 5. Refrigerant-134a at 700kPa, 70°C, and 8 kg/min is cooled by air in a condenser until...

    5. Refrigerant-134a at 700kPa, 70°C, and 8 kg/min is cooled by air in a condenser until it exits as a saturated liquid at the same pressure. The cooling air enters the condenser at 1MPa and 10°C and leaves at 17°C at the same pressure. Determine: a) Considering only the Refrigerant as a system, the heat transfer rate of a refrigerant from the condenser in (kl/min). R-134a Tables are attached! b) The mass flow rate of the air required for cooling...

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg/m, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag hl h3 su h2 civa

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT