Question
Assuming that the specific heat of the solution is 4.18 J/(g⋅∘C) and that the calorimeter itself absorbs a negligible amount of heat, calculate ΔH in kilojoules for the reaction.

Part A Assuming that the specific heat of the solution is 4.18 J/(g . C) and that the calorimeter itself absorbs a negligible


Constants Periodic Tab When 1.045 g of K2O is added to 50.0 mL of water at 25.0 °C in a calorimeter, the temperature of the w
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Assuming that the specific heat of the solution is 4.18 J/(g⋅∘C) and that the calorimeter itself...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider the combustion of propane: Assume that all of the heat comes from the combustion of...

    Consider the combustion of propane: Assume that all of the heat comes from the combustion of propane (C_1H_8). Calculate DeltaH in which 5.00 g of propane is burned in excess oxygen at constant pressure. When 1.045 g of CaO is added to 50.0 mL of water at 25.0degreeC in a calorimeter, the temperature of the water increases to 32.3degreeC Assuming that the specific heat of solution is 4.18 J/(gdegreeC) and that the calorimeter itself absorbs a negligible amyl heat, calculate...

  • Question 7 of 16 > In a calorimeter, 1.045 g of an unknown salt is dissolved...

    Question 7 of 16 > In a calorimeter, 1.045 g of an unknown salt is dissolved in 50.0 mL of water at 25.0 'C, and the temperature of the water increases to 32.3°C. Assuming that the specific heat of the solution is 4.184 J/g °C) and that the calorimeter itself absorbs a negligible amount of heat, calculate the AH in kJ for dissolving the salt in water. O 31.9 J -1.56 kJ 1.561 -1560 kJ O -31.9 O 1560 kJ...

  • A calorimeter contains 35.0 mL of water at 12.0 ∘C . When 2.30 g of X...

    A calorimeter contains 35.0 mL of water at 12.0 ∘C . When 2.30 g of X (a substance with a molar mass of 70.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X...

    A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X (a substance with a molar mass of 77.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 19.0 mL of water at 11.5 ∘C . When 2.50 g of X...

    A calorimeter contains 19.0 mL of water at 11.5 ∘C . When 2.50 g of X (a substance with a molar mass of 63.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X...

    A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X (a substance with a molar mass of 77.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 24.0 mL of water at 13.0 ∘C . When 2.00 g of X...

    A calorimeter contains 24.0 mL of water at 13.0 ∘C . When 2.00 g of X (a substance with a molar mass of 64.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 18.0 mL of water at 13.0 ∘C . When 1.80 g of X...

    A calorimeter contains 18.0 mL of water at 13.0 ∘C . When 1.80 g of X (a substance with a molar mass of 82.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 27.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • Part A: A calorimeter contains 26.0 mL of water at 13.0 ∘C . When 2.10 g...

    Part A: A calorimeter contains 26.0 mL of water at 13.0 ∘C . When 2.10 g of X (a substance with a molar mass of 49.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...

  • Part A A calorimeter contains 34.0 mL of water at 12.5 ∘C . When 1.50 g...

    Part A A calorimeter contains 34.0 mL of water at 12.5 ∘C . When 1.50 g of X (a substance with a molar mass of 75.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT