Question

- notaion, to evaluate the integral. Also give a sketch of the region of integration. Please use proper #1. Use the limit-sum

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Step 1)

we know that,

\small \int _a^bf(x)dx = \lim_{n\rightarrow \infty }\sum _{i=1}^nf(x_i)\triangle x

where,

\small \triangle x = \frac{b-a}{n}

\small x_i = a+i\triangle x

we have to evaluate,

\small \int _{-1}^1(x^2-3x)dx

Hence we have,

\small f(x)=x^2-3x, a = -1 \ and\ b = 1

we can write,

\small \triangle x = \frac{1-(-1)}{n} = \frac{1+1}{n} = \frac{2}{n}

\small x_i=-1+i\left ( \frac{2}{n} \right ) = -1+\frac{2i}{n}

Hence,

\small f(x_i)=f\left (-1+\frac{2i}{n} \right )

\small f(x_i)=\left (-1+\frac{2i}{n} \right )^2-3\left ( -1+\frac{2i}{n} \right )

\small f(x_i)=(-1)^2-\frac{4i}{n}+\left ( \frac{2i}{n} \right )^2+3-\frac{6i}{n}

\small f(x_i)=1-\frac{10i}{n}+\frac{4i^2}{n^2}+3

\small f(x_i)=4-\frac{10i}{n}+\frac{4i^2}{n^2}

using formula 1) we can write,

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\sum _{i=1}^n\left ( 4-\frac{10i}{n}+\frac{4i^2}{n^2} \right )\left ( \frac{2}{n} \right )

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\sum _{i=1}^n\left ( \frac{8}{n}-\frac{20i}{n^2}+\frac{8i^2}{n^3} \right )

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\left ( \sum _{i=1}^n\frac{8}{n}-\sum _{i=1}^n\frac{20i}{n^2}+\sum _{i=1}^n\frac{8i^2}{n^3} \right )

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\left (\frac{8}{n}\sum _{i=1}^n1-\frac{20}{n^2}\sum _{i=1}^ni+\frac{8}{n^3}\sum _{i=1}^ni^2 \right )

we know that,

\small \sum _{i=1}^n1 = n, \ \sum _{i=1}^ni= \frac{n(n+1)}{2}\ and \ \sum _{i=1}^ni^2 = \frac{n(n+1)(2n+1)}{6}

Hence,

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\left (\frac{8}{n}\cdot n-\frac{20}{n^2}\cdot \frac{n(n+1)}{2}+\frac{8}{n^3}\cdot \frac{n(n+1)(2n+1)}{6} \right )

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\left (8-\frac{10n^2\left ( 1+\frac{1}{n} \right )}{n^2}+\frac{4n^3\left ( 1+\frac{1}{n} \right )\left ( 2+\frac{1}{n} \right )}{3n^3} \right )

\small \int _{-1}^1(x^2-3x)dx = \lim_{n\rightarrow \infty }\left (8-10\left ( 1+\frac{1}{n} \right )+\frac{4\left ( 1+\frac{1}{n} \right )\left ( 2+\frac{1}{n} \right )}{3} \right )

\small \int _{-1}^1(x^2-3x)dx = 8-10\left ( 1+\frac{1}{\infty} \right )+\frac{4\left ( 1+\frac{1}{\infty} \right )\left ( 2+\frac{1}{\infty} \right )}{3}

\small \int _{-1}^1(x^2-3x)dx = 8-10\left ( 1+0 \right )+\frac{4\left ( 1+0\right )\left ( 2+0 \right )}{3}

\small \int _{-1}^1(x^2-3x)dx = 8-10\left ( 1 \right )+\frac{4\left ( 1\right )\left ( 2 \right )}{3}

\small \int _{-1}^1(x^2-3x)dx = 8-10+\frac{8}{3}

\small \int _{-1}^1(x^2-3x)dx = -2+\frac{8}{3}

\small \int _{-1}^1(x^2-3x)dx =\frac{-6+8}{3}

\small \int _{-1}^1(x^2-3x)dx =\frac{2}{3}

Step 2)

we have,

\small \int _{-1}^1(x^2-3x)dx

Hence we can say that,

x ranges from x = -1 to x = 1 it means region of integration is the region between the lines x = -1 and x = 1

we can graph the region of integration as below:

X =

Add a comment
Know the answer?
Add Answer to:
- notaion, to evaluate the integral. Also give a sketch of the region of integration. Please...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT