Question

A Particle of mass m ?S C, nered.h m ove in a one-dinmSonr! square well with inGnite Potential barriers as to and x-a State. A ?# AS (x- ) is added, ulere a Calculate the hrst-nder Perlurbation EetoH ? Calculate the second-order ?durbthon E(1)(Ae answer may be for ??a. The Particle is inthe ground Pertur ba tio n is a Small Con Stant expressed as an intinie series after doing a reasonable Simphificaution) use n En-E
0 0
Add a comment Improve this question Transcribed image text
Answer #1

C) En 쿠『 msn 즘 s.ne.끔2) е,(2)e sn 1馁) A-Sfr-ul.) dn. m in a/ 하! n-1 (22)@h CA けn } te mat T7 냐?

Add a comment
Know the answer?
Add Answer to:
A Particle of mass m ?S C, nered.h m ove in a one-dinmSonr! square well with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 5) A particle of mass m is in the ground state of the infinite square well...

    5) A particle of mass m is in the ground state of the infinite square well 0 < x < a At t-0 the right hand wall suddenly moves to x = 2a, doubling the size of the well. Assume that this expansion happens on a time scale so fast that the initial wave function (at t0+) is the same as just before the expansion (at t-0-) (This is called the "sudden" approximation.) a) What is the probability that a...

  • 1) Consider a particle with mass m confined to a one-dimensional infinite square well of length...

    1) Consider a particle with mass m confined to a one-dimensional infinite square well of length L. a) Using the time-independent Schrödinger equation, write down the wavefunction for the particle inside the well. b) Using the values of the wavefunction at the boundaries of the well, find the allowed values of the wavevector k. c) What are the allowed energy states En for the particle in this well? d) Normalize the wavefunction

  • 1. Consider a particle of mass m in an infinite square well with potential energy 0...

    1. Consider a particle of mass m in an infinite square well with potential energy 0 for 0 Sz S a oo otherwise V (x) For simplicity, we may take the 'universe' here to be the region of 0 S z S a, which is where the wave function is nontrivial. Consequently, we may express stationary state n as where En is the associated mechanical energy. It can be shown that () a/2 and (p:)0 for stationary state n. (a)...

  • 2. A particle of mass m in the infinite square well of width a at time...

    2. A particle of mass m in the infinite square well of width a at time 1 - 0 has wave function that is an equal weight mixture of the two lowest n= 1,2 energy stationary states: (x,0) - C[4,(x)+42(x)] (a) Normalize the wave function. Hints: 1. Exploit the orthonormality of W, 2. Recall that if a wave function is normalized at t = 0, it stays normalized. (b) Find '(x, t) and (x,1)1at a later time 1>0. Express Y*...

  • A particle of mass m is subject to a doubly infinite square well, with widths L,...

    A particle of mass m is subject to a doubly infinite square well, with widths L, located at (a/2, a/2). The eigenstate wave functions for this are v(x, y) = L, = a and centre %3D %3D sin () sin ("). nyTy a) Find an expression for the position operator in bra-ket notation. b) Find an expression for the momentum operator in bra-ket notation. c) The particle is initially in the state |) : for position and momentum to find...

  • 2. A particle of mass m in the infinite square well of width a (located at...

    2. A particle of mass m in the infinite square well of width a (located at 0 SSa) has as its initial wave function a mixture of two stationary states: v(x,0)Avi(x) +2s (x). (a) Find the probability density of finding the particle at the center of the well, as a function of time. (b) Find the average momentum of the particle at time t.

  • 1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0,...

    1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0, y a. The tube is infinitely long in the +z-direction. (a) Solve the Schroedinger equation to derive the allowed wave functions for this particle. Do not try to normalize the wave functions, but make sure they correspond to motion in +2-direction. (b) Determine the allowed energies for such a particle. (c) If we were to probe the...

  • Consider a particle of mass in a 10 finite potential well of height V. the domain...

    Consider a particle of mass in a 10 finite potential well of height V. the domain – a < x < a. a) Show that solutions for – a < x < a take the form on (x) = A cos(knx) for odd n, and on (x) = A sin(knx) for even n. . Show a) Match the boundary conditions at x = a to prove that cos(ka) = Bk where k is the wave vector for -a < x...

  • 4) A particle in an infinite square well 0 for 0

    4) A particle in an infinite square well 0 for 0

  • 3.9. A particle of mass m is confined in the potential well 0 0<x < L...

    3.9. A particle of mass m is confined in the potential well 0 0<x < L oo elsewhere (a) At time t 0, the wave function for the particle is the one given in Problem 3.3. Calculate the probability that a measurement of the energy yields the value En, one of the allowed energies for a particle in the box. What are the numerical values for the probabilities of obtaining the ground-state energy E1 and the first-excited-state energy E2? Note:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT