Question

4:33 < Back Final Assignment copy ☺ Ouestion 2: a) A 22 nF capacitor in series with a 3.9k12 resistor is put across 40V, 1 kH
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1) capacitance C=22nF

resistance =3.9kohm

voltage V=40V

frequency f= 1kHz

impedence Z=\sqrt{R^{2}+Xc^{2}} =\sqrt{R^{2}+(1/2\pi fc)^{2}}=\sqrt{3900^{2}+(1/2\pi 1000x22x10^{-9})^{2}} =8218.6ohm

current I = V/Z =40/8218.6ohm =4.867x10-3ampere

2)capacitance C=2x10-6F

resistance =100ohm

inductance L=8H

voltage V=200V

frequency f= 50Hz

phase difference \phi = cos-1 (R/Z)

impedence Z =\sqrt{R^{2}+(XL-Xc)^{2}} =\sqrt{R^{2}+(2\pi fL-1/2\pi fc)^{2}} =

\sqrt{100^{2}+(2\pi 50x8-1/2\pi 50x2x10^{-6})^{2}} =927.1ohm

phase difference \phi = cos-1 (R/Z) = cos-1 (100/927.1)=820

Add a comment
Know the answer?
Add Answer to:
4:33 < Back Final Assignment copy ☺ Ouestion 2: a) A 22 nF capacitor in series...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2) An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by...

    2) An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an AC voltage source with a peak voltage of 340V and a frequency of 660 Hz. (a) Find the peak current that flows in the circuit. (b) Determine the phase angle of the source voltage relative to the current. (c) Determine the peak voltage across the resistor and its phase angle relative to the voltage source. (d) Find the peak voltage across the inductor...

  • An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an...

    An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an AC voltage source with a peak voltage of 340V and a frequency of 660 Hz. (a) Find the peak current that flows in the circuit. (b) Determine the phase angle of the source voltage relative to the current. (c) Determine the peak voltage across the resistor and its phase angle relative to the voltage source. (d) Find the peak voltage across the inductor and...

  • An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an...

    An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an AC voltage source with a peak voltage of 340V and a frequency of 660 Hz. (a) Find the peak current that flows in the circuit. (b) Determine the phase angle of the source voltage relative to the current. (c) Determine the peak voltage across the resistor and its phase angle relative to the voltage source. (d) Find the peak voltage across the inductor and...

  • 2) An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by...

    2) An RLC series circuit with 150-ohm resistor, 25-mH inductor, and 2 microfarad-capacitor is powered by an AC voltage source with a peak voltage of 340V and a frequency of 660 Hz. (a) Find the peak current that flows in the circuit. (b) Determine the phase angle of the source voltage relative to the current. (c) Determine the peak voltage across the resistor and its phase angle relative to the voltage source. (d) Find the peak voltage across the inductor...

  • A 1200 Ω resistor, a 600 nF capacitor and a 25 μH inductor are placed in...

    A 1200 Ω resistor, a 600 nF capacitor and a 25 μH inductor are placed in series with a variable frequency AC source. 1. Find the reactances χC and χL and the circuit impedance Z when ƒ = 1500 Hz. 2. The fixed capacitor is replaced with a variable capacitor, and we are going to use the circuit to tune an AM radio, searching for the resonant frequencies. Since the AM band holds frequencies between 520 kHz and 1610 kHz,...

  • A resistor, an inductor, and a capacitor are connected in series to an AC source. The...

    A resistor, an inductor, and a capacitor are connected in series to an AC source. The AC source is operating at the resonance frequency. Which of the following statements are true? Check all that apply. The current is in phase with the driving voltage. The total voltage across the inductor and the capacitor at any instant is equal to zero. The peak voltage across the capacitor is greater than the peak voltage across the inductor. The peak voltage across the...

  • A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20...

    A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20 ur, and a source with ΔⅤmax-240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance 69.11 (b) Calculate the capacitive reactance 757.88 (c) Calculate the impedance 141 (d) Calculate the resistance in the circuit. 6.887 The impedance is a function of the resistance and the impedances of the inductor and capacitor. kΩ (e) Calculate...

  • A series AC circuit contains a resistor, an inductor of 200 mH, a capacitor of 4.30...

    A series AC circuit contains a resistor, an inductor of 200 mH, a capacitor of 4.30 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 180 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °

  • A resistor (R = 9.00 ✕ 102 Ω), a capacitor (C = 0.250 μF), and an...

    A resistor (R = 9.00 ✕ 102 Ω), a capacitor (C = 0.250 μF), and an inductor (L = 2.40 H) are connected in series across a 2.40 ✕ 102-Hz AC source for which ΔVmax = 1.05 ✕ 102 V. (a) Calculate the impedance of the circuit. _____kΩ (b) Calculate the maximum current delivered by the source. ____A (c) Calculate the phase angle between the current and voltage. _____° (d) Is the current leading or lagging behind the voltage? 1)The...

  • We have a series RLC circuit with an AC voltage source: The resistance is 100Ohm, the inductance ...

    We have a series RLC circuit with an AC voltage source: The resistance is 100Ohm, the inductance is 10mH, the capacitance is 10mF. Select all the right answers. At 60Hz What is true? Question 10 options: The current through the inductor is larger than through the resistor The voltage across the inductor is larger than the voltage across the capacitor The voltage is lagging behind the current at the source The voltage and the current are in phase at the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT