Question

A rail-gun is constructed with a magnetic field of 1.5T extending for a distance of 75cm. The 1.6g projectile slides on frict
0 0
Add a comment Improve this question Transcribed image text
Answer #1

given
B = 1.5 T
d = 75 cm = 0.75 m
m = 1.6 g = 0.0016 kg
L = 10 cm = 0.10 m
I = 20 A
magnetic force acting on projectile, F = B*I*L

acceleration of projectile, a = F/m

= B*I*L/m

= 1.5*20*0.1/0.0016

= 1875 m/s^2

now use, vf^2 - vi^2 = 2*a*d

vf^2 - 0^2 = 2*1875*0.75

vf = sqrt(2*1875*0.75)

= 53.0 m/s <<<<<<<<<<--------------------------Answer

Add a comment
Know the answer?
Add Answer to:
A rail-gun is constructed with a magnetic field of 1.5T extending for a distance of 75cm....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A rail gun uses electromagnetic forces to accelerate aprojectile to very high velocities. The basic...

    A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 50.0 g and electrical resistance 0.400 Ω rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L= 5.00 cm apart. (Figure 1) The rails are also connected to a voltage source providing a voltage of V = 5.00 V...

  • Rail Gun Part A Find ps, the coefficient of static friction between the rod and the...

    Rail Gun Part A Find ps, the coefficient of static friction between the rod and the rails. A rail qun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 40.0 g and electrical resistance 0.500 22 rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 6.00 cm apart. (Figure...

  • A Rail Gun uses electromagnetic forces to accelerateaprojectile to very high velocities. The basic mechanism...

    A Rail Gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass m and electrical resistance R rests on parallel horizontal rails (that have negligible electric resistance), which are a distance L apart.  The rails are also connected to a voltage source V, so a current loop is formed.The rod begins to move if the externally applied vertical...

  • please show work when possible so that I may better understand. Thank you. x=L The rail gun consists of two thick conducting rails connected to a power supply and there is a magnetic field ass...

    please show work when possible so that I may better understand. Thank you. x=L The rail gun consists of two thick conducting rails connected to a power supply and there is a magnetic field assumed to be uniform and constant in the direction shown. A short conducting bar that is to be (or carry) the projectile is placed across the bars at x -0. The current flows through the bars as shown. The magnetic force on the bar causes it...

  • A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic...

    A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 50.0 gg and electrical resistance 0.300 ΩΩ rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance LLL = 10.0 cmcm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of VVV = 5.00 VV...

  • A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic...

    A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 50.0 gand electrical resistance 0.500 Ω rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 7.00 cm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of V = 5.00 V ....

  • A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic...

    A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 10.0g and electrical resistance 0.300Ω rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 5.00 cm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of V = 5.00 V . The...

  • Part A A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities....

    Part A A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 10.08 and electrical resistance 0.300 2 rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance I = 5.00 cm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of V = 5.00...

  • Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model...

    Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (see figure below) consists of two long, parallel, horizontal rails (= 3.60 cm apart, bridged by a bar of mass m = 2.75 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 27.0 A by a power supply that is far to the left of...

  • 1.) A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The...

    1.) A rail gun uses electromagnetic forces to accelerate a projectile to very high velocities. The basic mechanism of acceleration is relatively simple and can be illustrated in the following example. A metal rod of mass 30.0 g and electrical resistance 0.100 Ω rests on parallel horizontal rails that have negligible electric resistance. The rails are a distance L = 6.00 cm apart. (Figure 1)The rails are also connected to a voltage source providing a voltage of V = 5.00...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT