Question

and v ωセ carnival ride consists of a large cylinder of radius R - 5.00 m with its axis vertical. It is rotated about the m - 80.0 kg, stands on a platform with his back up against the wall of the cylinder. When the cylinder figures below e axis completing one rotation every 3.00 seconds. During the rotation, a person with a mass tuto speed the platform drops away and the person remain suspended up against the wall. See the 几 Center Axis of Cylinder Person Side View Ton View acceleration vector in the figure. (4 pts.) Using the coordinate system shown in the figure and the symbols you have defined write down a) In the Side View figure above, clearly show all the forces acting on the person. Include the b) the force equations describing this motion. c) What is the speed of the person? What is the minimum value of the coefficient of static friction so that the person does not slide down the wall. d) fslmg us
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
and v ωセ carnival ride consists of a large cylinder of radius R - 5.00 m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • “The Rotor” is a fun carnival ride. It’s made of a large hollow cylinder of radius...

    “The Rotor” is a fun carnival ride. It’s made of a large hollow cylinder of radius R, that’s rotated rapidly about the center axis. A rider stands with her back against the inner wall. At a certain speed, the floor drops, but the rider does not fall. 9) The Rotor" is a fun carnival ride. It's made of a large hollow cylinder of radius R, that's rotated rapidly about the center axis. A rider stands with her back against the...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s 2 . Given g = 9.8 m/s 2 , the coefficient µ = 0.564 of static friction between a person and the wall, and the radius of the cylinder R = 4.9 m. For simplicity, neglect the...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s2. Given g = 9.8 m/s2, the coefficient μ = 0.569 of static friction between a person and the wall, and the radius of the cylinder R = 5.4 m. For simplicity, neglect the person’s depth and assume...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away. If the coefficient of static friction between the person and the wall is 0.563 and the radius of the cylinder is 8.87 m, what is the minimum tangential speed necessary to keep a person from falling? ____ m/s What is the maximum period of rotation to keep a...

  • Carnival ride

    In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom ofthe room! Friction between the walls of the room and the people on the ride make them the “stick” to the wall so they do not slide down. In one ride, the radius of thecylindrical room is R = 6 m and the room spins with a frequency of 23.2 revolutions per...

  • Friction Problem of a classical spinning carnival ride

    In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom ofthe room! Friction between the walls of the room and the people on the ride make them the “stick” to the wall so they do not slide down. In one ride, the radius of thecylindrical room is R = 6.8 m and the room spins with a frequency of 22.4 revolutions per...

  • In a popular amusement park ride, a rotating cylinder of radius 3 m is set in...

    In a popular amusement park ride, a rotating cylinder of radius 3 m is set in rotation as in the figure. The floor then drops away, leaving the riders suspended against the wall in a vertical position. (i) What force keeps the rider from slipping down without a floor? (ii) What force acts as the centripetal force in this situation? (iii) How many forces are acting on the rider? Name all of them.

  • I need the answers for 5 and 6 parts In a classic carnival ride, patrons stand...

    I need the answers for 5 and 6 parts In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom of the room! Friction between the walls of the room and the people on the ride make them the "stick" to the wall so they do not slide down. In one ride, the radius of the cylindrical room is R = 6.1 m...

  • 11. “The Rotor”. The amusement park ride known as “the rotor”, essentially a large hollow cylinder,...

    11. “The Rotor”. The amusement park ride known as “the rotor”, essentially a large hollow cylinder, rotates rapidly about a central axis. Riders stand on the floor up against the wall of this ride before it begins to rotate. Once the ride starts, all riders, the wall, and floor begin to rotate rapidly and undergo uniform circular motion. When the rotation speeds reaches a certain value, the floors fall away and the riders are held pinned against the wall where...

  • In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once...

    In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom of the room! Friction between the walls of the room and the people on the ride make them the "stick" to the wall so they do not slide down. In one ride, the radius of the cylindrical room is R = 6.4 m and the room spins with a frequency of 21.8...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT