Question
use the answers to answer d,e, and f
A mass is attached to a spring and is oscillating in simple harmonic motion as shown in the figure. DOKS y (cm) BA Time (s) a
If the spring constant is k = 300N/m, what is the total energy in the oscillatory motion of the mass-spring system? (Look at
0 0
Add a comment Improve this question Transcribed image text
Answer #1

total energy is . (d) We see that at point D in the form of potential energy. : E = Ekin + Edot =ot Ert E = / Kes? at D, X=6c

Add a comment
Know the answer?
Add Answer to:
use the answers to answer d,e, and f A mass is attached to a spring and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m = 3 kg is attached to a spring with spring constant k =...

    A mass m = 3 kg is attached to a spring with spring constant k = 3 N/m and oscillates with simple harmonic motion along the x-axis with an amplitude A = 0.10 m. (a) What is the angular frequency  of this oscillation? (b) What is the period T and the frequency f of the oscillation? (c) If the phase constant  = 0, write down expressions for the displacement, velocity and acceleration of the mass as a function...

  • 1) A 7.5kg mass attached to a spring with a spring constant of 365 N/m oscillates...

    1) A 7.5kg mass attached to a spring with a spring constant of 365 N/m oscillates on a horizontal, frictionless track. Att 0, the mass is released from rest at x-2.32 cm. (That is, the spring is stretched by 2.32 cm.) (a) Determine the frequency of the oscillations. (b) Determine the maximum speed of the mass. Where does the maximum speed occur? (c) Determine the maximum acceleration of the mass. Where does the maximum acceleration occur? 2) A body is...

  • Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x...

    Can you please answer both questions, Y=0 Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x (30 cm) cos[(6.28 rad/s)t + /4) Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed (e) maximum acceleration of the block, and (e) the total energy of the spring-block. of the block Problem 4 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 + y)...

  • z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by...

    z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by = (30 cm) cos[(6.28 rad/s)t + /4]. Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed of the block, (e) maximum acceleration of the block, and (e) the total energy of the spring-block. Problem 3 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 s, and amplitude of 20 cm. The mechanical...

  • A spring with k = 245 N/m has a mass of m = 4.35 kg attached...

    A spring with k = 245 N/m has a mass of m = 4.35 kg attached to it. An external force F whose maximum value is 825 N drives the spring mass system so that it oscillates without any resistive forces. If the amplitude of the oscillatory motion of the spring-mass system is 3.65 cm, find the frequency of the external force that drives this motion. Hz

  • A 250 g mass is attached to a horizontal spring and oscillates with a frequency of...

    A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • A 250 g mass is attached to a horizontal spring and oscillates with a frequency of...

    A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. What is the spring constant? B. What is the total energy of the oscillator? What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT