Question

5. (20 Points) For the loading on the simply supported beam shown below. a) What is the internal shear and bending moment at

0 0
Add a comment Improve this question Transcribed image text
Answer #1

D CalculahDn of Reachon 9coLltt 60008 2Forces cin y direchon) O 6ft RA 3tH RA 1a00-600 +PR - O diagrem RA tRB toad 1800 t+ve1O50 clb Re Shear force O to 1050db AT A V Changes from betoeen AdC shear force RA-300(7) 1 Shear fore AT C RA (9x008)- ShearGiven Wid tb hight 30 con Momed of T 12 cinerhia 2 4 I 5333.33 en 10 un M 00X 12) -in X 10 un 5333.33 uny 60.15 psi TM

Add a comment
Know the answer?
Add Answer to:
5. (20 Points) For the loading on the simply supported beam shown below. a) What is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a simply supported beam abcd with arectangular cross sectioncarries the loading shown in figure. the...

    a simply supported beam abcd with arectangular cross section carries the loading shown in figure. the uniform beam has a mass of 33 kg per meter (m kg/m) and a cross section as shown in the figure. you may take 10 m/s^2 as acceleration.Question A2 A simply supported beam ABCD with a rectangular cross-section carries the loading shown in Figure QA2. The uniform beam has a mass of m kg per meter of length (m kg/m) and a cross-section as shown...

  • 1. For the simply supported beam subjected to the loading shown, Derive equations for the shear...

    1. For the simply supported beam subjected to the loading shown, Derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) a. b. Plot the shear-force and bending-moment diagrams for the beam using the derived functions c. Report the maximum bending moment and its location. 42 kips 6 kips/ft 10 ft 20 ft

  • For the beam and loading shown, please (a) determine the reactions at A and C, (b)...

    For the beam and loading shown, please (a) determine the reactions at A and C, (b) draw the shear and bending moment diagrams, and (c) find the maximum normal stress on the beam. 2000 lb 200 lb/ft 4 ft 4 ft 6 ft

  • A prismatic beam with span L = 3 ft is simply supported at points A and...

    A prismatic beam with span L = 3 ft is simply supported at points A and B. The beam is supporting a uniform load with q = 160 lb/in . The cross-section of the beam is a solid rectangle with width b = 1 in and height h = 4 in . Determine: a. The normal stress (σ C ) and shear stress (τ C ) at point C located 8 inches left of support B and 1 in. below...

  • If a simply supported beam is subjected to the following loading and across section of the beam is provided

    If a simply supported beam is subjected to the following loading and across section of the beam is provided, determine the following a. Determine the maximum bending stress in the beam. b. Determine the absolute maximum shear stress in the beam. 

  • The beam is simply supported. Problem 3. (30 points) A wooden beam is composed of a...

    The beam is simply supported. Problem 3. (30 points) A wooden beam is composed of a 2 x8" (1.5"x7.25") top flange and a 3"x10 (2.5"x9.25") web to form a T section. Assume that the two members are glued together. L-16 ft. (a) For a uniform dead load of 20 lb/ft over the entire beam span and a uniform live load of 80 lb/ft over the left half of the span, draw the shear and moment diagrams. (b) Determine the cross-sectional...

  • a. Draw a free-body diagram for the beam shown above and derive expressions for the support...

    a. Draw a free-body diagram for the beam shown above and derive expressions for the support reactions at A and B b. Draw internal force (shear and bending moment) diagrams. c. If a = 10 ft and M0 = 200 ft-lb, use the dimensions of the beam cross-section, provided on the previous page, to compute the maximum flexural and shear stresses on the beam cross-section. d. If the allowable bending stress is 925 psi and the allowable shear stress is...

  • Q3 (25 pts) 3. For the cantilever beam shown below and to the left, Determine the...

    Q3 (25 pts) 3. For the cantilever beam shown below and to the left, Determine the reactions at the wall at C. Draw the shear (V) and moment (M) diagram for the beam and label the appropriate values. For the given cross section, determine the magnitude of the maximum COMPRESSIVE bending stress and state where this occurs along the length of the beam and along the height of the beam (top or bottom). Sketch the NORMAL stress distribution (profile) for...

  • Assume a beam has the loading shown and a rectangular cross section. is at the center...

    Assume a beam has the loading shown and a rectangular cross section. is at the center and G is at the bottom. Assume point E is at the top, F Cross Sectional View of plane cut at B 400 lb 4 in 500 lb 3 in 10 in. 15 it 1 5 in 1) The beam is cut along a face at B that is perpendicular to the X axis. What is the internal resistive shear force at this face?...

  • 2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft...

    2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft over the entire span. The beam and cross section are shown below. Draw the shear and moment diagrams, find the neutral axis location, moment of inertia of the composite section, the maximum bending stress on the cross section. (40 points) 10" 2 k/ft 1-3" 30'-0"

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT