Question

A car can cover the 900 m of a race track in 45s   The most challenging...

A car can cover the 900 m of a race track in 45s   The most challenging elements of the race are the turns, which are very tight, with a radius of approximately 30m. Estimate the magnitude of he car's centripetal acceleration in a turn ?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

distance cover by car in uss is d = goom Velocity v= the t V= goo 20 m/s 45 radius of curvature R = 3om Centripetal accelerat

Add a comment
Know the answer?
Add Answer to:
A car can cover the 900 m of a race track in 45s   The most challenging...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A race car rounds one end of a speedway. This end of the track is a...

    A race car rounds one end of a speedway. This end of the track is a turn with a radius r of approximately 187 ft. If the track is assumed to be completely flat and the race car is traveling at a constant 67.00 mi/h around the turn, what is the race car's centripetal (radial) acceleration ac? 1) ac= ft/s2 Convert this result to SI units. 2) ac= m/s2 3) What is the force responsible for the centripetal acceleration in...

  • Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the...

    Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approximately 57.0 m . If the track is completely flat and the race car is traveling at a constant 30.5 m/s (about 68 mph ) around the turn, what is the race car's centripetal (radial) acceleration? centripetal acceleration: m/s2 Which force is responsible for the centripetal acceleration in this case? friction, normal ,gravity , or weight...

  • Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the...

    Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approximately 57.0 m. If the track is completely flat and the race car is traveling at a constant 27.5 m/s (about 62 mph) around the turn, what is the race car's centripetal (radial) acceleration? centripetal acceleration: 12.19 m/s2 Incorrect Which force is responsible for the centripetal acceleration in this case? O weight gravity friction normal What...

  • A 900-kg race car can drive around an unbanked turn at a maximum speed of 42...

    A 900-kg race car can drive around an unbanked turn at a maximum speed of 42 m/s without slipping. The turn has a radius of 170 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 10000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A race car goes around a level, circular track with a diameter of 1.00 km at...

    A race car goes around a level, circular track with a diameter of 1.00 km at a constant speed of 89 km/h. What is the car's centripetal acceleration in m/s2?

  • A race car rounds a curve at 59 m/s. The radius of the curve is 403...

    A race car rounds a curve at 59 m/s. The radius of the curve is 403 m, and the car's mass is 640 kg. (Assume the car's speed remains constant. Take the radially inward direction to be positive. Indicate the direction with the sign of your answer.) (a) What is the car's (centripetal) acceleration? (b) What is it in g's? (enter value to 3 decimal places) (c) What is the centripetal force acting on the car?

  • A 960-kg race car can drive around an unbanked turn at a maximum speed of 45...

    A 960-kg race car can drive around an unbanked turn at a maximum speed of 45 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 13000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A 810-kg race car can drive around an unbanked turn at a maximum speed of 40...

    A 810-kg race car can drive around an unbanked turn at a maximum speed of 40 m/s without slipping. The turn has a radius of 120 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 9200 N on the car. What is the coefficient of static friction between the track and the car's tires? What would be the maximum speed if no downforce acted on the car?

  • A 860-kg race car can drive around an unbanked turn at a maximum speed of 44...

    A 860-kg race car can drive around an unbanked turn at a maximum speed of 44 m/s without slipping. The turn has a radius of 140 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?

  • A race car travels with a constant tangential speed of 81.3 m/s around a circular track of radius 678 m.

    A race car travels with a constant tangential speed of 81.3 m/s around a circular track of radius 678 m. Find the magnitude of the total acceleration.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT