Question

Let α and β be positive constants. Consider a continuous-time Markov chain X(t) with state space...

Let α and β be positive constants. Consider a continuous-time Markov chain X(t) with state space S = {0, 1, 2} and jump rates

q(i,i+1) = β   for0≤i≤1

q(j,j−1) = α for1≤j≤2.

Find the stationary probability distribution π = (π0, π1, π2) for this chain.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer:

Given Data

Let α and β be positive constants

S = {0, 1, 2}

jump rates

q(i,i+1) = \beta for 0 \leq i \leq1

961.j-1) = aforl<i < 2.

X ( t ) be continuous time Markov chain with state space s = { 0 , 1 , 2 }

q(i,i+1) = \beta for 0 \leq i \leq1

961.j-1) = aforl<i < 2.

0   1 2

  P=\begin{bmatrix} 0\\1 \\2 \end{bmatrix}\begin{bmatrix} \alpha &\beta &0 \\ \alpha& 0 &\beta \\ 0 &\alpha &\beta \end{bmatrix}

V_{k}=\Sigma V_{j}P_{j}K

(V. Vi v) = (V V V2) P

V_{0}+V_{1}+V_{2}=1

V_{0}=\alpha V_{0}+\alpha V_{1}   \Rightarrow (1-\alpha)V_{0}=\alpha V_{1}

V_{1}=\beta V_{0}+\alpha V_{2}  

V_{2}=\beta V_{1}+\beta V_{2}   \Rightarrow (1-\beta)V_{2}=\beta V_{1}

V_{1}=\beta\left ( \frac{\alpha}{1-\alpha} \right )V_{1}+\alpha\left ( \frac{\beta}{1-\beta} \right )V_{1}

V_{1}=\left ( \frac{\beta \alpha}{1-\alpha}+\frac{\alpha \beta}{1-\beta} \right )V_{1}

V_{0}=\frac{\alpha}{1-\alpha}V_{1}

V_{2}=\frac{\beta}{1-\beta}V_{1}

\frac{\alpha}{1-\alpha}V_{1}+V_{1}+\frac{\beta}{1-\beta}V_{1}=1

\frac{(1-\beta)\alpha V_{1}+(1-\alpha)(1-\beta)V_{1}+(1-\alpha)\beta V_{1}}{(1-\alpha)(1-\beta)}=1\alpha V_{1} -\alpha \beta V_{1}+V_{1}-\alpha V_{1}-\beta V_{1}+\alpha \beta V_{1}+\beta V_{1}-\alpha \beta V_{1}=(1-\alpha)(1-\beta)V_{1}-\alpha \beta V_{1}= 1-\alpha-\beta -\alpha \beta

V_{1}=\frac{(1-\alpha)-\beta(1-\alpha)}{1-\alpha \beta}

V_{2}=\frac{\beta}{1-\beta}^{\frac{1}{(1-\alpha \beta)}(1-\alpha)(1-\beta)}

V_{0}=\frac{\alpha}{1-\alpha}.\frac{1}{1-\alpha \beta}(1-\alpha)(1-\beta)

V_{0}=\frac{\alpha(1-\beta)}{1-\alpha \beta}

V_{1}=\frac{(1-\alpha)(1-\beta)}{1-\alpha \beta}

V_{2}=\frac{\beta(1-\alpha)}{1-\alpha \beta}

Stationary distribution is

\pi _{0}=\frac{\alpha(1-\beta)}{1-\alpha \beta}

\pi_{1}=\frac{(1-\alpha)(1-\beta)}{1-\alpha \beta}

\pi_{2}=\frac{\beta(1-\alpha)}{1-\alpha \beta}

****Please like it..

Add a comment
Know the answer?
Add Answer to:
Let α and β be positive constants. Consider a continuous-time Markov chain X(t) with state space...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT