Question

4. Let us revisit the shifted harmonic oscillator from problem set 5, but this time through the lens of perturbation theory.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

At cA Ep ms Kom)HI mpr En-E En 70 1A ms <ml6ln x n- Eno-En n n+ c2 Tokal energy0rds comreehen uoane frnchn Ma Ens -Ent tro-E C - 1tr [ E t odd odol R integral Sinte inegrand a limita euem anewhat is PS5 I dont know.thank you

Add a comment
Know the answer?
Add Answer to:
4. Let us revisit the shifted harmonic oscillator from problem set 5, but this time through...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D:...

    4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D: p21 ÃO = + mwf?, where m is the mass of the particle and w is the angular frequency. Now, let us perturb the oscillator with a quadratic potential. The perturbation is given by Î' = zgmw?h?, where g is a dimensionless constant and g <1. (a) Write down the eigen-energies of the unperturbed Hamiltonian. (b) In Lecture 3, we introduced the lowering (or...

  • 1. Consider a charged particle bound in the harmonic oscillator potential V(x) = mw x2. A...

    1. Consider a charged particle bound in the harmonic oscillator potential V(x) = mw x2. A weak electric field is applied to the system such that the potential energy, U(X), now has an extra term: V(x) = -qEx. We write the full Hamiltonian as H = Ho +V(x) where Ho = Px +mw x2 V(x) = –qEx. (a) Write down the unperturbed energies, EO. (b) Find the first-order correction to E . (c) Calculate the second-order correction to E ....

  • Assume that the Harmonic Oscillator potential is being perturbed by an additional term that is quadratic...

    Assume that the Harmonic Oscillator potential is being perturbed by an additional term that is quadratic inx: Hy = an mw?x?; l«l< 1 Calculate the energy to the first non-zero correction using the Perturbation approach. Use ladder operatorst How does this result compare with the exact one?

  • 10. A harmonic oscillator with the Hamiltonian H t 2m dr? mooʻr is now subject to...

    10. A harmonic oscillator with the Hamiltonian H t 2m dr? mooʻr is now subject to a 2 weak perturbation: H-ix. You are asked to solve the ground state of the new Hamiltonian - À + in two ways. (a) Solve by using the time-independent perturbation theory. Find the lowest non- vanishing order correction to the energy of the ground state. And find the lowest non vanishing order correction to the wavefunction of the ground state. (b) Find the wavefunction...

  • H2 Consider two harmonic oscillators described by the Hamiltonians łty = ħws (atât ta+2) and =...

    H2 Consider two harmonic oscillators described by the Hamiltonians łty = ħws (atât ta+2) and = ħwz (6+6 +) with â (h) and at (@t) being the annihilation and creation operators for the first (second) oscillator, respectively. The Hamiltonian of two non-interacting oscillators is given by Ĥg = îl + Ħ2. Its eigenstates are tensor products of the eigenstates of single-oscillator states: Ĥm, n) = En,m|n, m), where İn, m) = \n) |m) and n, m = 0,1,2, ... a)...

  • H2 Consider two harmonic oscillators described by the Hamiltonians łty = ħws (atât ta+2) and =...

    H2 Consider two harmonic oscillators described by the Hamiltonians łty = ħws (atât ta+2) and = ħwz (6+6 +) with â (h) and at (@t) being the annihilation and creation operators for the first (second) oscillator, respectively. The Hamiltonian of two non-interacting oscillators is given by Ĥ, = îl + Ĥ2. Its eigenstates are tensor products of the eigenstates of single-oscillator states: Ĥm, n) = En,m|n, m), where İn, m) = \n) |m) and n, m = 0,1,2, ... 1....

  • 3. (a) Consider a 1-dim harmonic oscillator in its ground state (0) of the unperturbed Hamiltonian at t--0o. Let a pert...

    3. (a) Consider a 1-dim harmonic oscillator in its ground state (0) of the unperturbed Hamiltonian at t--0o. Let a perturbation Hi(t)--eEXe t2 (e, E and rare constants) be applied between - and too. What is the probability that the oscillator will be in the state n) (of the unperturbed oscillator) as t-> oo?(15%) (b) The bottom of an infinite well is changed to have the shape V(x)-ε sin® for 0Sxa. Calculate the energy shifts for all the excited states...

  • 3 Problem Three [10 points] (The Quantum Oscillator) We have seen in class that the Hamiltonian...

    3 Problem Three [10 points] (The Quantum Oscillator) We have seen in class that the Hamiltonian of a particle of a simple Harmonic oscillator potential in one dimension can be expressed in term of the creation and annihilation operators àt and à, respectively, as: or with In >, n = 0,1,..) are the nth eigenstates of the above Hamiltonian. Part A A.1. Show that the energy levels of a simple harmonic oscillator are E,' Aw (nti), n=0, 12, A.2. Calculate...

  • Electrical Perturbation (bonus problem, 50 pts) An electron moving in a one-dimensional harmonic potential of frequency...

    Electrical Perturbation (bonus problem, 50 pts) An electron moving in a one-dimensional harmonic potential of frequency ω is experiencing a weak electric field E in x-direction, resulting in the Hamiltonian 5. 2mdx2 2 Calculate the energy to the first non-zero correction using perturbation theory and compare with the exact result of e282 2mu2 Hint: Use ladder operators in H and H

  • 1. (30pt) LC Circuit and Simple Harmonic Oscillator (From $23.12 RLC Series AC Circuits) Let us...

    1. (30pt) LC Circuit and Simple Harmonic Oscillator (From $23.12 RLC Series AC Circuits) Let us first consider a point mass m > 0 with a spring k> 0 (see Figure 23.52). This system is sometimes called a simple harmonic oscillator. The equation of motion (EMI) is given by ma= -kr (1) where the acceleration a is given by the second derivative of the coordinate r with respect to time t, namely dr(t) (2) dt de(t) (6) at) (3) dt...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT