Question

QUESTION 2 (20 MARKS) (a) A continuous time signal x(t) = 3e2tu(-t) is an input to a Linear Time Invariant system of which th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

لن Given 2+ 201+ = 3€ (-+) and hit) 2 -oots-2 - 244-2 otherwise he Knowe that output recill be g(t) = htact) - Se h(t) alt-t(2) 6) Given Impulse Response of ahhts system is n h {n} = 4/006 ulo) condition for stability :- If impulse response is absolso system is stable © y[n] - 4 + 3_ y[n-2) = 2X[ns] -0 2 We then 2 know that that if if a[n] = {[n] output of y (n] = b[n] Imto. [n] - [n] 3 hn-21 +28Cn-17 20 for M=0, 10JE 오 네 3 V-2) +28-1 =0+O4O 5 hj= for, n= J E 도시이 3 HJ+ 2810) - 20 오x0.3 kp + 2xl

Add a comment
Know the answer?
Add Answer to:
QUESTION 2 (20 MARKS) (a) A continuous time signal x(t) = 3e2tu(-t) is an input to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For a continuous time linear time-invariant system, the input-output relation is the following (x(t) the input, y(t) the...

    For a continuous time linear time-invariant system, the input-output relation is the following (x(t) the input, y(t) the output): , where h(t) is the impulse response function of the system. Please explain why a signal like e/“* is always an eigenvector of this linear map for any w. Also, if ¥(w),X(w),and H(w) are the Fourier transforms of y(t),x(t),and h(t), respectively. Please derive in detail the relation between Y(w),X(w),and H(w), which means to reproduce the proof of the basic convolution property...

  • A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called...

    A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called the “transfer function” of the LTI system, is . For each of the following cases, determine the region of convergence (ROC) for H(s) and the corresponding h(t), and determine whether the Fourier transform of h(t) exists. (a) The LTI system is causal but not stable. (b) The LTI system is stable but not causal. (c) The LTI system is neither stable nor causal 8...

  • Question 1: (2 marks) Find the zero-input response yz(t) for a linear time-invariant (LTI) system described...

    Question 1: (2 marks) Find the zero-input response yz(t) for a linear time-invariant (LTI) system described by the following differential equation: j(t) + 5y(t) + 6y(t) = f(t) + 2x(t) with the initial conditions yz (0) = 0 and jz (0) = 10. Question 2: (4 marks) The impulse response of an LTI system is given by: h(t) = 3e?'u(t) Find the zero-state response yzs (t) of the system for each the following input signals using convolution with direct integration....

  • 2. Short-answer questions on various topics (20 marks total) In each case, clearly explain the reasoning...

    2. Short-answer questions on various topics (20 marks total) In each case, clearly explain the reasoning behind your answer. a. (3 marks) A causal LTI system has an impulse response h[n], having an even component he[n] and an odd component ho[n]. The portion of he[n] for n > 0 is he[n] = 0.5(0.32)", n > 0. Determine the complete description of he[n], ho[n], and h[n]. b. (3 marks) A system has the transfer function z– 7z+6 H(2) = 22 -0.12...

  • QUESTION 4 a. Determine the frequency spectrum of the signal x(t) b. What is the Nyquist...

    QUESTION 4 a. Determine the frequency spectrum of the signal x(t) b. What is the Nyquist rate for this signal? cos(t) + 5sn3t. me-invariant system defined by, dt dt what will the system output y(t) be? QUESTION 5 The system function of a casual LTI system is given as, 2s a. Find the impulse response of the system. b. Find the step response of the system. A causal discrete-time LTI system is described by, y[n] - (3/4) yin-1+(1/8) yin-21 xn]...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • 2. (a) For each sample of a discrete time signal x[n] as input, a system S...

    2. (a) For each sample of a discrete time signal x[n] as input, a system S outputs the value y[n- . Determine whether the system S is i. linear ii. time-invariant 1ll. causal iv. stable Each of your answers should be supported by justification. In other words, show your reasoning (b) Consider a stable linear time-invariant (LTI) system with transfer function H(z). It is required to design a LTI compensator system G(z) that is in cascade with H(z) such that...

  • Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equati...

    Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution determine yin, 1f XIn = 1 un.(6 marks Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution...

  • Question 1 (10 pts): Consider the continuous-time LTI system S whose unit impulse response h is given by Le., h consists of a unit impulse at time 0 followed by a unit impulse at time (a) (2pts)...

    Question 1 (10 pts): Consider the continuous-time LTI system S whose unit impulse response h is given by Le., h consists of a unit impulse at time 0 followed by a unit impulse at time (a) (2pts) Obtain and plot the unit step response of S. (b) (2pts) Is S stable? Is it causal? Explain Two unrelated questions (c) (2pts) Is the ideal low-pass continuous-time filter (frequency response H(w) for H()0 otherwise) causal? Explain (d) (4 pts) Is the discrete-time...

  • 2. Let y(t)(e')u(t) represent the output of a causal, linear and time-invariant continuous-time system with unit...

    2. Let y(t)(e')u(t) represent the output of a causal, linear and time-invariant continuous-time system with unit impulse response h[nu(t) for some input signal z(t). Find r(t) Hint: Use the Laplace transform of y(t) and h(t) to first find the Laplace transform of r(t), and then find r(t) using inverse Laplace transform. 25 points

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT