Question

5. The three tank liquid system is at a steady-state shown. The flow rates into the tank are suddenly changed to Q1 20.3 m/s, Q 15.5 m/s and Q m3/s, 2 m3/s (a) Determine the resistances in the pipes at steady-state. (b) Derive a mathematical linearized mathematical model for the system using the perturbations in liquid level as the outputs and the perturbations in flow rates as the inputs. 3 3 20 15 100 m 80 m 75 m 2 40 m 2 25 m 25 m2 Figure 1

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
5. The three tank liquid system is at a steady-state shown. The flow rates into the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (20%) Problem 2 The circular tank shown in Figure 2 below has a steady state level of 50 m for a flow rate Q 2.5 m3/s....

    (20%) Problem 2 The circular tank shown in Figure 2 below has a steady state level of 50 m for a flow rate Q 2.5 m3/s. Determine the flow resistance at the outlet If the flow rate is suddenly increased to 2.52 m3/s, Determine: A. (2.5%) B. (7.5%) (5%) (5%) The level of the liquid when the system reaches steady state again. The time constant and the time dependent response of tthe system. The 2% settling time of the system....

  • 5. (10 points) Consider the liquid-level system shown. At steady state, the inflow rate is Q:...

    5. (10 points) Consider the liquid-level system shown. At steady state, the inflow rate is Q: the outflow rates are Q1 and Q, respectively; the flow rate from tank 1 to tank 2 is Q12, and the heads of tanks 1 and 2 are H and H2, respectively. If the inflow rate is changed from Q to Q+q, determine the transfer function Hz(8)/Q(s). Assume the deviations 4,91,92,912, h, and hy are all small. 6th Jan Hathe +7 т/ н+А, JE>,+8....

  • Consider the liquid level system shown in Figure 1. At steady state, the inflow rate and...

    Consider the liquid level system shown in Figure 1. At steady state, the inflow rate and outflow rate are both Ở and the flow rate between the tanks is zero. The heads at tank 1 and tank 2 are both H. At t = 0, the inflow rate is changed from 0 to + , where is the small change in the inflow rate. The resulting changes in the heads (h/ and h2) and flow rates are assumed to be...

  • Considering the following liquid-level qo where the liquid is laminar flow and .0-steady-state fl...

    Considering the following liquid-level qo where the liquid is laminar flow and .0-steady-state flow rate (m'/s) . H-steady-state head (m) rate from the steady-state value (m/s) qi-small deviation of inflow . qo-small deviation ofoutflow rate from the steady-state value (m/s) h - small deviation of head from its steady-state value (m) . R-the resistance of the laminar flow in the output flow pipe · C-the capacitance of the tank Derive the differential equation model of the liquid-level-system with input as...

  • The level ho of liquid in a vertical cylindrical tank as shown in Figure 4 is related to the infl...

    please answer all of part i really need them ASAP ... The level ho of liquid in a vertical cylindrical tank as shown in Figure 4 is related to the inflow of liquid qi by the time domain equation d h dt where τ RLGL, the steady state gain of the system is G RL/pg and the tank capacitance, inlet ine ho outlet vave Tank Figure 4: Tank Level Process (a) You carry out some measurements on the tank and...

  • (30pts) Consider the liquid level system shown in the figure. Assume the outflow rate Q (m3/s) th...

    (30pts) Consider the liquid level system shown in the figure. Assume the outflow rate Q (m3/s) through the outflow value is related to the liquid level H by Assume also that, when the inflow rate Qi and outflow rate QOare at Q = 0015m3/s, the liquid level stays at constant H. The capacitance C of the tank is 2m2 Find the steady state value of the liquid level system H. Develop the governing equations for the liquid level system and...

  • 5 Consider the following air pneumatic system which is comprised of two rigid tanks of volume V a...

    5 Consider the following air pneumatic system which is comprised of two rigid tanks of volume V and V2. The variables δΡ-6p, and δΡ are small deviations around a reference steady-state pressure as The pneumatic lines have linearized resistances R1 and R Ci Py P2 a. Determine the pneumatic capacitances, Ci and Ca for the tanks undergoing an isothermal process at temperature T b. Derive a model of the pressures δΡυ and δΡ with δp, as the input. c.Define the...

  • The open cylindrical tank in the figure contains water and is being filled as shown. Assume...

    The open cylindrical tank in the figure contains water and is being filled as shown. Assume incompressible flow with pwater = 1000 kg/m^3. 1. (15 marks): The open cylindrical tank in the figure contains water and is being filled as shown. Assume incompressible flow, with water = 1000 kg/m3. a) Write the mass transport equation and note that the flow may not be steady, which implies that the rate of change of mass in the control volume needs not be...

  • liquid-level

    Liquid Level System Consider the liquid level system shown below. At steady state, the inflow rate is Q and the outflow rate is also Q Assume that at t = 0 the inflow rate is changed from Q to Q + qr where q, is a small quantity. The disturbance input is qd, which is also a small quantity. Draw a block diagram of the system and simplify it to obtain H 2(s) as a function of Q(s) and Q...

  • 1. Consider a single tank for flow rate control and water level regulation. A single tank...

    1. Consider a single tank for flow rate control and water level regulation. A single tank subject to the pump dynamics can be modeled as follows Tank dynamics: h.-le,-4M h, -e-eyh.), Pump dynamics: Q,-1(av,-0) Pump dynamics: Q,--(av,-Q.) Tank dynamics: where the parameters are defined as follows: h :water level c: valve resistance r: time constant S,: water tank area Q,: supplied flow rate a: voltage scaling factor ,: applied control input voltage (all the coefficients are positive) (A). Please apply...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT