Question

The drawing shows a cross-sectional view of two sp

0 0
Add a comment Improve this question Transcribed image text
Answer #1

work done by the positive charge in the uniform electric field is

W = e \Delta V

W = e(VA - VB )

so

VB - VA = - W / e

Answer is E.

Add a comment
Know the answer?
Add Answer to:
The drawing shows a cross-sectional view of two spherical equipotential surfaces and two electric field lines...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The drawing shows a cross-sectional view of two spherical equipotential surfaces and two electric field lines...

    The drawing shows a cross-sectional view of two spherical equipotential surfaces and two electric field lines that are perpendicular to these surfaces. When an electron moves from point A to point B (against the electric field), the electric force does +3.2 x 10-19 J of work. What are the electric potential differences (a) VB - VA, (b) VC - VB, and (c) VC - VA? Electric field lines Equipotential surfaces Cross-sectional view) O (a) o V, (b) 0 V, (c)...

  • 1) Do the electric field lines cross? Can two equipotential 2) Explain why the equipotential surfaces...

    1) Do the electric field lines cross? Can two equipotential 2) Explain why the equipotential surfaces should be always 3) A uniform electric field is parallel to the y-axis. What lines ever cross? Explain. perpendicular to the electric field lines? direction can a charge be displaced in this field without any external work being done on the charge?

  • 1· The sketch shows cross sections of equipotential surfaces between two charged conductors that are shown...

    1· The sketch shows cross sections of equipotential surfaces between two charged conductors that are shown in solid black 20V 40 V (a) What is the potential difference between points B and E? (b) At which of the labeled points will the electric field have the greatest magnitude? (c) what is the electric field at point A (magnitude and direction)? 2. The sketch on the back of this page shows cross sections of two conducting spherical sbells. (a -5.0 cm,...

  • PART 2: Electric Potential 1. (2) TF Equipotential surfaces are perpendicular to electric field lines. 2....

    PART 2: Electric Potential 1. (2) TF Equipotential surfaces are perpendicular to electric field lines. 2. (2) T F Electric field lines point towards lower electric potential. 3. (2) T F The electron-volt is a unit of electric potential. 4. (2) T F When two charges of opposite signs get closer together their electric potential energy increases.

  • The diagram shows the cross sections of equipotential surfaces at various distancelx from point 0 in...

    The diagram shows the cross sections of equipotential surfaces at various distancelx from point 0 in an electric field. V (V) 60 55 50 45 x (cm) 20 40 6080 (a) (b) (c) (d) (e) Explain whether the electric field is uniform. Find the magnitude of the electric field strength. What is the direction of the electric field? What is the force acting on an electron in the electric field? An electron moves from the equipotential surface of 55 V...

  • 04 m 5. The sketch below shows cross sections of equipotential surfaces between two charged conductors...

    04 m 5. The sketch below shows cross sections of equipotential surfaces between two charged conductors that are shown in solid grey. Various points on the equipotential surfaces near the conductors are labeled A, B, CI. 70 V -60 V At which of the labeled points will the electric field have the greatest magnitude? A) G -30V -20V B) I C) A D) H E) D At which of the labeled points will an electron have the greatest potential energy?...

  • (Figure 1) shows a region of space with an electric field. Vertical lines indicate equipotential surfaces....

    (Figure 1) shows a region of space with an electric field. Vertical lines indicate equipotential surfaces. A particle with charge q = -4.8 nC is initially at the location of the -20-V equipotential line. At time t = 0 the particle is released from rest. Ignore the force exerted by Earth on the particle. Part A: Estimate the magnitude of force exerted by the electric field on the particle when it passes the 0-V equipotential line. Part B: Estimate the...

  • 1) Which of the following statements about electric fields and equipotential surfaces are correct? (check all...

    1) Which of the following statements about electric fields and equipotential surfaces are correct? (check all that apply) a)The electric field direction is always from higher potential to lower potential. b)The number of electric field lines per unit area perpendicular to the field lines is proportional to the strength of the electric field in that region c)Equipotential surfaces are surfaces where the potential is constant over this surface. d)Electric field lines begin on positive charges and end on negative charges....

  • The dashed lines in the diagram represent cross sections of equipotential surfaces drawn in 1 Vincrements....

    The dashed lines in the diagram represent cross sections of equipotential surfaces drawn in 1 Vincrements. (Figure 1) Part A What is the work WAB done by the electric force to move a 1 Ccharge from A to B? Part B What is the work WAD done by the electric force to move a 1 Ccharge from A to D? Part C The magnitude of the electric field at point C is *greater than the magnitude of the electric field...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT