Question

Newton's Law: Hanging Sculpture: A project manager wishes to hang a 50 kg sculpture in the...

Newton's Law:

Hanging Sculpture: A project manager wishes to hang a 50 kg sculpture in the atrium of her building using clear fishing line. The sculpture will be suspended using two pieces of fishing line which connect to the ceiling. The first piece is attached so it makes a 65 angle with the vertical, while the second piece is attached so it makes a 85 angle with the vertical. A piece of fishing line is known to support a maximum mass of 75 kg when hanging vertically. Will this be a stable design, or will the sculpture come crashing down? ______________Be sure to show your full solution including free body diagrams

0 0
Add a comment Improve this question Transcribed image text
Answer #1

                        

                     

Add a comment
Know the answer?
Add Answer to:
Newton's Law: Hanging Sculpture: A project manager wishes to hang a 50 kg sculpture in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Forces and Newton's LAWS WU PHYS 1107 - General Physics I ) An 9.0 kg mass...

    Forces and Newton's LAWS WU PHYS 1107 - General Physics I ) An 9.0 kg mass (M) is placed on a horizontal surface. A massless rope runs over a frictionless massless pulley which connects the mass M to a 6.5 kg mass (m) that hangs vertically. a) What is the acceleration of the vertical mass if the horizontal surface is frictionless? b) What is the tension in the rope if the horizontal surface is frictionless? Now assume that the horizontal...

  • Vibrational Motion Introduction If an object is following Hooke’s Law, then Fnet = -kx = ma...

    Vibrational Motion Introduction If an object is following Hooke’s Law, then Fnet = -kx = ma Since acceleration is the second derivative of position with respect to time, the relationship can be written as the differential equation: kx = m δ2xδt2/{"version":"1.1","math":"<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>&#160;</mo><mo>=</mo><mo>&#160;</mo><mi>m</mi><mo>&#160;</mo><mfrac bevelled="true"><mrow><msup><mi>&#948;</mi><mn>2</mn></msup><mi>x</mi></mrow><mrow><mi>&#948;</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math>"} Methods for solving differential equations are beyond the scope of this course; in fact, a class in differential equations is usually a requirement for a degree in engineering or physics. However, the solution to this particular differential...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT