Question

For a particle described as a harmonic oscillator, the total energy w given by E,- (n + hy and the potential energy is piven
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Government of West Bengal of art at a classical limit kr 2 h la thou] 42 tres Traky a trokut swice do probability of finding

Add a comment
Know the answer?
Add Answer to:
For a particle described as a harmonic oscillator, the total energy w given by E,- (n...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the...

    2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the wave function for the ground state, but not the value of the constant A. Determine what it has to be if the ground state is normalized. (b) Suppose a classical particle has an energy equal to the ground state energy E. This particle will, of course, oscillate back and forth as though it were attached to a spring. What would its turning points be?...

  • [20 points] A particle in the simple harmonic oscillator potential with angular frequency a is initially...

    [20 points] A particle in the simple harmonic oscillator potential with angular frequency a is initially in the ground state: c,y, (x) =Yo(x Att = 0 , the angular frequency of the oscillator suddenly doubles: a} → a½-2.4 The initial wave function can be written in terms of the modified potential (denoted with a tilde:~: Recall that the general form of the first few stationary states for the harmonic oscillator are given on page 56 of your text. a. What...

  • The wave function of the ground state of a harmonic oscillator, with a force constant k...

    The wave function of the ground state of a harmonic oscillator, with a force constant k and mass m is given as 1 Vo(x) = (1) where mwo k h m Calculate the probability of finding the particle outside the classical region. a = =

  • Consider a particle subjected to a harmonic oscillator potential of the form x)m. The allowed values...

    Consider a particle subjected to a harmonic oscillator potential of the form x)m. The allowed values of energy for the simple harmonic oscillator is (a) What is the energy corresponding to the ground state (3 points)? (b) What is the energy separation between the ground state and the first excited state (3 points)? (c) The selection rule allows only those transitions for which the quantum number changes by 1. What is the energy of photon necessary to make the transition...

  • Consider a harmonic oscillator with reduced mass μ and angular frequency a. The equilibrium posit...

    please help Consider a harmonic oscillator with reduced mass μ and angular frequency a. The equilibrium position is set at x-0 (a) What is the n-4 vibrational eigenfunction? Look it up on the Internet and give the normalized wave function, the derivation is not necessary (b) Show that the wave function you give in (a) is normalized. Use an integral table if needed. (c) What are the classical turning points of the n-4 vibrational state? (d) Calculate the probability that...

  • The most general wave function of a particle in the simple harmonic oscillator potential is: V(x,...

    The most general wave function of a particle in the simple harmonic oscillator potential is: V(x, t) = (x)e-1st/ where and E, are the harmonic oscillator's stationary states and their corresponding energies. (a) Show that the expectation value of position is (hint: use the results of Problem 4): (v) = A cos (wt - ) where the real constants A and o are given by: 1 2 Ae-id-1 " Entichtin Interpret this result, comparing it with the motion of a...

  • tthe-independent Help: The operator expression dimensions is given by H 2m r ar2 [2] A particle of mass m is in a three-dimensional, spherically symmetric harmonic oscillator potential given by V...

    tthe-independent Help: The operator expression dimensions is given by H 2m r ar2 [2] A particle of mass m is in a three-dimensional, spherically symmetric harmonic oscillator potential given by V(r)2r2. The particle is in the I-0 state. Noting that all eigenfunetions must be finite everywhere, find the ground-state radial wave-function R() and the ground-state energy. You do not have to nor oscillator is g (x) = C x exp(-8x2), where C and B are constants) harmonic malize the solution....

  • A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy ,...

    A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy , and ф are the usual spherical coordinates. (a) In the form given above, why is it clear that the potential energy function V) is (b) For this problem, it will be more convenient to express this spherically-symmetric where r , spherically symmetric? A brief answer is sufficient. potential energy in Cartesian coordinates x, y, and z as physically the same potential energy as the...

  • Question 3: A particle is in the ground state (po) of a simple harmonic oscillator potential....

    Question 3: A particle is in the ground state (po) of a simple harmonic oscillator potential. (a) Determine Φ(p,t). (b) Classically, the kinetic energy cannot exceed the total mechanical energy of the particle, so w. You measure the momentum of the particle. What is the probability that you will measure a value outside of the classically allowed range? 2 Reminders: foo e-a2+br dr=v/Te4a where a is real and positive. The error e edt and can be calculated numerically function is...

  • h2 4. In a region of the x-axis, a particle has a wave function given by...

    h2 4. In a region of the x-axis, a particle has a wave function given by y(x) = Ae-*4722° and energy where L is some length. (a) Find the potential energy as a function of x, and sketch V (x) versus x. (b) What is the classical potential (or corresponding force function) that has this dependence? (c) Find the kinetic energy as a function of x. (d) Show that x = L is the classical turning point (i.e. the place...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT