Question

An Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C and 750 kJ

1 0
Add a comment Improve this question Transcribed image text
Answer #1

to solve the question first find all the properties of state ,i.e, p,v,t at states 1,2,3 by adiabatic law, ideal gas equation

after that thermal efficiency = work done / heat addition = 1 -(1/r)\small \gamma -1

from here we can calculate thermal efficiency and work done in the process

lastly mean effective pressure(P mean) = work done / Swept volume

Solution) Given, For air, Compression ratio (1)=8 8=1.4 195 kPa, Ti= RTC = 300k Sodd = 750k/kg = Cv (T3 -T₂ ) - 0 Process 1-2As process P. process 2-3 2-3 is constant volume process thus or P= P₂ x T3 - 1746.02 x 16 44.53 0 6890 122 3 This IP₂ - 4166

Add a comment
Know the answer?
Add Answer to:
An Otto cycle has a compression ratio of 8. At the beginning of the compression process,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

  • Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the...

    Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 750 kJ/kg of heat is transferred to air during the constant- volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat- addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for...

  • Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of...

    Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27 and 720 kJ/kg of heat is transferred to air during the constant volume heat addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R=0.287 kJ/kg.K. Determine the network output (You must provide an answer before moving on to the next part.) The net work output...

  • An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression...

    An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression process, air is at 100 kPa and 17°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle .

  • (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning...

    (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning of the compression process, the air is at 101 kPa and 27°C. During the constant volume heat addition process, 790 kJ/kg of heat is transferred to the air. Accounting for variable specific heats with temperature, determine: the maximum temperature during the cycle 1266.862 °C the maximum pressure during the cycle 6239.424 kPa the specific net work output 475.495481 kJ/kg the mean effective pressure (MEP)...

  • Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the co...

    Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 780 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R= 0.287 kJ/kg-K Determine the net work output. (You must provide an answer before moving on to the next part.) The net work output...

  • Problem (3) The compression ratio of an air-standard Otto cycle is 8. At the beginning of...

    Problem (3) The compression ratio of an air-standard Otto cycle is 8. At the beginning of compression process, the air is at 100 KPa, and 17 °C. 800 kJ/kg of heat is transferred to the air during the constant volume heat addition process. Determine: (a) The highest temperature in the cycle. (b) The highest pressure in the cycle. (c) The net work. (d) The thermal efficiency of the cycle.

  • At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...

    At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1300 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.

  • Problem 9.001 SI At the beginning of the compression process of an air-standard Otto cycle, p1...

    Problem 9.001 SI At the beginning of the compression process of an air-standard Otto cycle, p1 1 bar and T1 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1400 kJ/kg Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle (d) the mean effective pressure, in kPa.

  • 4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temp...

    4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temperature is 1116°C. Accounting for variable specific heats, determine: (a) the heat addition per cycle in kJ. Ans: 3.368 kJ (b) the net work per cycle in kJ. Ans: 1.907 kJ (c) the mean effective pressure in kPa. Ans: 460.6 kPa (d) the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT