Question

[12 6. Consid er a particle of mass m moving in an infinitely deep square well potential of width a, whose wave function at time t 0 is where on Ce) is the normaized wave function of the n-th eigenstate of the Hamitonian of that particle The corresponding eigen-energy of the n-th state is 2ma?n 1,2,3,... (e) Find the average energy of the system (ie. the expectation value () (b) Write down the wave function p(z,t) at a later time t. (c) What is the average energy of the system at time t? [2 19]


0 0
Add a comment Improve this question Transcribed image text
Answer #1

태: 3rd ,, Amp ave noge energd of -the s stern :8 Go ma a,t Sinee the avesage enesa of the sestem does mot cepend en t. Soitil

Add a comment
Know the answer?
Add Answer to:
[12 6. Consid er a particle of mass m moving in an infinitely deep square well...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. A particle of mass m in the infinite square well of width a at time...

    2. A particle of mass m in the infinite square well of width a at time 1 - 0 has wave function that is an equal weight mixture of the two lowest n= 1,2 energy stationary states: (x,0) - C[4,(x)+42(x)] (a) Normalize the wave function. Hints: 1. Exploit the orthonormality of W, 2. Recall that if a wave function is normalized at t = 0, it stays normalized. (b) Find '(x, t) and (x,1)1at a later time 1>0. Express Y*...

  • please explain all, thanks! 4. (60 pts) A particle in an infinite square well of width...

    please explain all, thanks! 4. (60 pts) A particle in an infinite square well of width L has an initial wave function (x,t = 0) = Ax(L - x)2, OSX SL a) Find y(x, t) fort > 0. You first have to normalize the wave function. Hint: this is best expressed an infinite series: show that the wave function coefficients are on = * 31% (12 – n?)(1-(-1)") → (n = 87315 (12 - nºre?); n odd. b) Which energy...

  • 2. A particle of mass m in the infinite square well of width a (located at...

    2. A particle of mass m in the infinite square well of width a (located at 0 SSa) has as its initial wave function a mixture of two stationary states: v(x,0)Avi(x) +2s (x). (a) Find the probability density of finding the particle at the center of the well, as a function of time. (b) Find the average momentum of the particle at time t.

  • At time t = 0, a mass-m particle in a one-dimensional potential well is in a...

    At time t = 0, a mass-m particle in a one-dimensional potential well is in a state given by the normalised wave function (x, 0) =3/2eAl2| | -ao x << 0, realU>0. Find the potential energy V = the energy eigenvalue E. Fix zero energy according to the convention V(x) » 0 for ao. Is there a delta function singularity at x0? V (x) for which this is an energy eigenstate and determine [6] At time t = 0, a...

  • 1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0,...

    1l] A particle with mass m and energy E is inside a square tube with infinite potential barriers at x-o, x-a, y 0, y a. The tube is infinitely long in the +z-direction. (a) Solve the Schroedinger equation to derive the allowed wave functions for this particle. Do not try to normalize the wave functions, but make sure they correspond to motion in +2-direction. (b) Determine the allowed energies for such a particle. (c) If we were to probe the...

  • Consider a particle of mass m that is described by the wave function (x, t) =...

    Consider a particle of mass m that is described by the wave function (x, t) = Ce~iwte-(x/l)2 where C and l are real and positive constants, with / being the characteristic length-scale in the problem Calculate the expectation values of position values of 2 and p2. and momentum p, as well as the expectation Find the standard deviations O and op. Are they consistent with the uncertainty principle? to be independent What should be the form of the potential energy...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

  • 5) A particle of mass m is in the ground state of the infinite square well...

    5) A particle of mass m is in the ground state of the infinite square well 0 < x < a At t-0 the right hand wall suddenly moves to x = 2a, doubling the size of the well. Assume that this expansion happens on a time scale so fast that the initial wave function (at t0+) is the same as just before the expansion (at t-0-) (This is called the "sudden" approximation.) a) What is the probability that a...

  • Questions 1 - 5 deal with a particle in a one-dimensional infinite square well of width...

    Questions 1 - 5 deal with a particle in a one-dimensional infinite square well of width a where 0, 0 SX Sa V(x) = 100, Otherwise. The stationary states are Pn(x) = sin(**) with energies En = "forn = 1,2,3.. Question 1 (14 pts) Which of the following is correct? A. The Hilbert space for this system is one dimensional. B. The energy eigenstates of the system form a ID Hilbert space. C. Both A and B are correct. D....

  • Consider a particle of mass m in an infinite spherical potential well of radius a For write down the energies and corresponding eigen functions ψ--(r,0.9). (3 pt) a) ne that at t-o the wave fu...

    Consider a particle of mass m in an infinite spherical potential well of radius a For write down the energies and corresponding eigen functions ψ--(r,0.9). (3 pt) a) ne that at t-o the wave function is given by o)-A. Find the normalization constant A function in this basis. Solve for the coeffici You may find useful the integrals in the front of the (6 pt) d) Now consider the finite potential spherical well with V(r)- ing only the radial part...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT