Question









nsider the differential equation y=1+cosly). y/o)=0 a) what is the value of y as x tends to infinity ? What is the value of
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answerin equation es The given differential condition with initial I= t cosy Which is an * Equation autonomous 0 can be sromo. Thus we obtain that y=(2n+1) a; where he Z which are the equilibrium solutions of a solution . Now to check stability of e

Add a comment
Know the answer?
Add Answer to:
nsider the differential equation y'=1+cosly). y/o)=0 a) what is the value of y as x tends...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the following differential equation system: x' = 16x + 8y y = -24x – 12y...

    Consider the following differential equation system: x' = 16x + 8y y = -24x – 12y (a) Find the general solution. (b) Without a computer, sketch a phase diagram that shows four linear solution trajectories and that shows one solution trajectory in each of the four regions between the separatrices. (c) Determine the solution that satisfies x(0) = 1 and y(0) = 0. x(t) = yt) = (d) The point (0,0) is a ... Osaddle point stable node unstable node...

  • First, verify that y(x) satisfies the given differential equation. Then, determine a value of the constant...

    First, verify that y(x) satisfies the given differential equation. Then, determine a value of the constant C so that y(x) satisfies the given initial condition. Use a computer or graphing calculator to sketch several typical solutions of the given differential equation, and highlight the one that satisfies the given initial condition. y' =y+3; y(x) = CeX-3; y(0) = 8 What step should you take to verify that the function is a solution to the given differential equation? O A. Differentiate...

  • Suppose that all solutions of the differential equation f(x,y), y = g(x,y) exist for all time and...

    Suppose that all solutions of the differential equation f(x,y), y = g(x,y) exist for all time and that f and g are smooth (Co) functions. Let 7(t) be the solution of the initial value problem with γ(0) = (1,2). Prove or give a counterexample to the statement that the w-limit set of γ can contain more than one critical point. Suppose that all solutions of the differential equation f(x,y), y = g(x,y) exist for all time and that f and...

  • 1. (25 pts) An autonomous differential equation has an unstable equilibrium solution at y = -1,...

    1. (25 pts) An autonomous differential equation has an unstable equilibrium solution at y = -1, a semi-stable equilibrium solution at y = 0, and a stable equilibrium at y = 5/2. a. Sketch the slope field for the system. b. Propose a first order differential equation (use x as the independent variable) that meets the description above. c. What solution method(s) can be used to solve this system?

  • (1 point) Consider the system of differential equations dx dt = -1.6x + 0.5y, dy dt...

    (1 point) Consider the system of differential equations dx dt = -1.6x + 0.5y, dy dt = 2.5x – 3.6y. For this system, the smaller eigenvalue is -41/10 and the larger eigenvalue is -11/10 [Note-- you may want to view a phase plane plot (right click to open in a new window).] If y' Ay is a differential equation, how would the solution curves behave? All of the solutions curves would converge towards 0. (Stable node) All of the solution...

  • = 3x +0.75y, = 1.66667x + y. For this system, the smaller eigenvalue is 1/2 and...

    = 3x +0.75y, = 1.66667x + y. For this system, the smaller eigenvalue is 1/2 and the larger eigenvalue is 7/2 [Note-- you may want to view a phase plane plot (right click to open in a new window).] If y' = Ay is a differential equation, how would the solution curves behave? All of the solutions curves would converge towards 0. (Stable node) All of the solution curves would run away from 0. (Unstable node) The solution curves would...

  • Differential equation 1. Chapter 4 covers differential equations of the form an(x)y("4a-,(x)ye-i) + +4(x)y'+...

    Differential equation 1. Chapter 4 covers differential equations of the form an(x)y("4a-,(x)ye-i) + +4(x)y'+4(x)-g(x) Subject to initial conditions y)oyy-Co) Consider the second order differential equation 2x2y" + 5xy, + y-r-x 2- The Existence of a Unique Solution Theorem says there will be a unique solution y(x) to the initial-value problem at x=而over any interval 1 for which the coefficient functions, ai (x) (0 S is n) and g(x) are continuous and a, (x)0. Are there any values of x for...

  • Consider the following. x = 8x + y y' - 2x + 6y. X(O) = (-1,2)...

    Consider the following. x = 8x + y y' - 2x + 6y. X(O) = (-1,2) (a) Find the general solution (x(t), y(t) = Determine whether there are periodic solutions. (If there are periodic solutions, enter the period. If not, enter NONE.) NONE (b) Find the solution satisfying the given initial condition (x(6), y(t)) - (c) With the aid of a calculator or a CAS graph the solution in part (b) and indicate the direction in which the curve is...

  • (1 point) Consider the systems of differential equations = 0.12 - 0.4y, = -0.4x + 0.7y....

    (1 point) Consider the systems of differential equations = 0.12 - 0.4y, = -0.4x + 0.7y. For this system, the smaller eigenvalue is !!! and the larger eigenvalue is Use the phase plotter pplane9.m in MATLAB to determine how the solution curves behave. A. The solution curves converge to different points. B. All of the solution curves converge towards 0. (Stable node) C. All of the solution curves run away from 0. (Unstable node) D. The solution curves race towards...

  • (3) Consider the differential equation ty' + 3ty + y = 0, 1 > 0. (a)...

    (3) Consider the differential equation ty' + 3ty + y = 0, 1 > 0. (a) Check that y(t) = 1-1 is a solution to this equation. (b) Find another solution (t) such that yı(t) and (t) are linearly independent (that is, wit) and y(t) form a fundamental set of solutions for the differential equation).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT