Question

The inductive reactance of the circuit is exactly twice the resistance: XL=2R. Draw the phasor that...

The inductive reactance of the circuit is exactly twice the resistance: XL=2R. Draw the phasor that represents the voltage across the inductor (V) at the instant indicated.uploaded image

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Vr goes in the bottom left quadrent twice as large. Make sure to draw it twice as large if you only draw it a little larger it will be marked wrong

Add a comment
Know the answer?
Add Answer to:
The inductive reactance of the circuit is exactly twice the resistance: XL=2R. Draw the phasor that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • RL Circuit Phasor Drawings Applet Vector

    The inductive reactance of the circuit is exactly twice the resistance: XL=2R. Adjust the phasor that represents the voltage across the inductor (VL) at the instant indicated to the proper length and orientation.

  • A series RLC circuit has resistance R = 10.0 Ω, inductive reactance XL = 34.0 Ω,...

    A series RLC circuit has resistance R = 10.0 Ω, inductive reactance XL = 34.0 Ω, and capacitive reactance XC = 21.0 Ω. If the maximum voltage across the resistor is ΔVR = 165 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) (a) the maximum voltage across the inductor (in V) V (b) the maximum voltage across...

  • A series RLC circuit has resistance R = 16.09, inductive reactance X, = 28.0 , and...

    A series RLC circuit has resistance R = 16.09, inductive reactance X, = 28.0 , and capacitive reactance X = 15.0 . If the maximum voltage across the resistor is AV, = 155 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) HINT (a) the maximum voltage across the inductor (in V) (b) the maximum voltage across the...

  • A load impedance consists of 25 ohm resistance in series with 38 ohm inductive reactance. The...

    A load impedance consists of 25 ohm resistance in series with 38 ohm inductive reactance. The load is connected across a 60 Hz, 240 V rms source. Use the voltage source as the reference (zero phase angle). a. Draw the circuit diagram. b. Calculate the value of inductance. c. Calculate the phasor value of current through the load impedance. d. Which leads, current or voltage? e. What is the phase angle between current and voltage? d. Calculate the phasor value...

  • A series RC circuit has resistance R - 14.00 inductive reactance X20:00, and capacitive reactance X...

    A series RC circuit has resistance R - 14.00 inductive reactance X20:00, and capacitive reactance X 12. 00. If the maximum voltage across the resistor is av = 125 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations including answers submitted in Webassin) HINT (a) the maximum voltage across the inductor (in V) (b) the maximum voltage across the capacitor ( V)...

  • A series RCL circuit includes a resistance of 225, an inductive reactance of 572, and a...

    A series RCL circuit includes a resistance of 225, an inductive reactance of 572, and a capacitive reactance of 469. The current in the circuit is 0.295 A. What is the voltage of the generator? Note: The ac current and voltage are rms values and power is an average value unless indicated otherwise. I got 81.12982713 V but for some reason it keeps saying I am wrong.

  • A series RLC circuit contains the following components. The resistance of the circuit is 200.0 D.,...

    A series RLC circuit contains the following components. The resistance of the circuit is 200.0 D., the inductance is 230.0 mH, and the capacitance is 70.0 uF. There is a source with DeltaVmax = 36.0 V operating at 60.0 Hz. Find the following: The inductive reactance The capacitance reactance The impedance The maximum current The phasor angle Phi If you could choose a different inductor is it possible that the voltage across the inductor be greater than the source voltage...

  • A series RCL circuit includes a resistance of 237, an inductive reactance of 513, and a...

    A series RCL circuit includes a resistance of 237, an inductive reactance of 513, and a capacitive reactance of 439. The current in the circuit is 0.207 A. What is the voltage of the generator? Note: The ac current and voltage are rms values and power is an average value unless indicated otherwise.

  • The voltage across an Inductor whose inductive reactance (XL) equals en is given as: v(t) -...

    The voltage across an Inductor whose inductive reactance (XL) equals en is given as: v(t) - 12 sin wt a. What is the sinusoidal expression for the current? b. Sketch and label the v(t) and (t) sinusoidal expressions on the same set of axes below: (1) v(t) vs wt and (2) ((t) vs wt 2 (t), ict) in ut e

  • Inductive Reactance: Build a series circuit in Multisim containing a 1ks Resistor, 33mH inductor L, and...

    Inductive Reactance: Build a series circuit in Multisim containing a 1ks Resistor, 33mH inductor L, and 4 VRMS 8kHz sinewave source. Calculate the, Inductive reactance X_ showing your formula: XL = ΚΩ Then measure the following with whatever Multisim instrument you want: Inductor peak-peak voltage VLpp = Resistor RMS voltage VRrms = Inductor RMS voltage Verms = Circuit RMS current Irms = mA

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT