Question

A metal rod lies across frictionless parallel rails in a uniform magnetic field that points normal to the plane of the rails.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A metal rod lies across frictionless parallel rails in a uniform magnetic field that points normal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 7 The conducting rod shown in the figure has length L and is being pulled along horlizontal, frictionless, conducting rails at a constant metal strip. A uniform magnetic field, directed...

    Question 7 The conducting rod shown in the figure has length L and is being pulled along horlizontal, frictionless, conducting rails at a constant metal strip. A uniform magnetic field, directed of the magnetic fieid is 8-1.0 T. (a) What is the magnitude Assume that L15 cm, the speed of the rod is v -5.9 m/s, and the magnitude of emf induced in voits in the rod? (b) What is the current in amperes in the conducting loop? Assume that...

  • Problem 3 In the figure below, a conducting rod rests on frictionless conducting parallel rails. There...

    Problem 3 In the figure below, a conducting rod rests on frictionless conducting parallel rails. There is a uniform magnetic going into the page of .50T. The rod is pulled at a constant velocity of 3m/s. The resistance of the rails and rod is negligible; however there is a 0.5F capacitor at then end of the rails. The distance between the rails is 20cm. a) Calculate the magnitude and direction of the emf in the circuit. Indicate the direction of...

  • A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B...

    A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B pointing out of the page as shown. The bar is moving at a speed v as indicated to the right. The rails have negligible electrical resistance compared to the crossbar, and you may neglect friction in the sliding of the crossbar. (a) What is the direction of the induced current flowing in the crossbar? Explain your reasoning. (b) Systematically develop an expression for the...

  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L = 0.20 m. The rails are connected on one end by a R = 10.12 resistor. A conducting bar of mass 1.2 kg can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m2. There is zero resistance in the conducting bar or rails. A uniform...

  • Q.3: A metal rod is forced to move with a constant velocity v along two parallel...

    Q.3: A metal rod is forced to move with a constant velocity v along two parallel metal rails, connected with a strip of metal at one end as shown in the figure. A magnetic field B- 0.350T points out of page. (a) If the rails are separated by 25.0cm and the speed of the rod is 53.0cm/s, what emf is generated? (b) If the rod has a resistance of 18.092 and the rails and connectors have negligible resistance, what is...

  • The conducting rod shown in the figure has length L and is being pulled along horizontal, frictio...

    The conducting rod shown in the figure has length L and is being pulled along horizontal, frictionless, conducting rails at a constant velocity. The rails are connected at one end with a metal strip. A uniform magnetic field, directed out of the page, fills the region in which the rod moves. Assume that L 8.3 cm, the speed of the rod is v = 4.4 m/s, and the magnitude of the magnetic field is B = 1.0 T. (a) what...

  • In the figure, a metal rod is forced to move with constant velocity along two parallel...

    In the figure, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude B = 0.409 points out of the page. (a) If the rails are separated by 32.0 cm and the speed of the rod is 44.7 cm/s, what is the magnitude of the emf generated in volts? (b) If the rod has a resistance of 17.4 and the rails...

  • In the figure, a metal rod is forced to move with constant velocity along two parallel...

    In the figure, a metal rod is forced to move with constant velocity along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude B = 0.517 T points out of the page. (a) If the rails are separated by 28.2 cm and the speed of the rod is 52.2 cm/s, what is the magnitude of the emf generated in volts? (b) If the rod has a resistance of 20.2 Ohm and...

  • A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are...

    A 0.480 kg, 37.5 cm long metal rod is sliding down two metal rails that are inclined 42.0° to the horizontal. The rails are connected at the bottom so that the metal rod and rails form a loop that has a resistance of 52.0 Ω. There is a 2.00 T vertical magnetic field throughout the region of the rails. The rod starts from rest and there is no friction between the rod and the rails a) (3 points) Find an...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT