Question

Air in a cylinder-Piston device undergoes a cyclic process. Initially, the air is at P-5 [MPa) and T-350 [C]. Process 1 to 2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

m= 5kg R=0.287 KJ/kg .k K=1.4 Pa lzaly & P1 = P3= 5la Paz Ampa I X Tis 350*= 350+223= 6931 V V3 va v n=1.3 Vg = DRT) 580.98.7

Add a comment
Know the answer?
Add Answer to:
Air in a cylinder-Piston device undergoes a cyclic process. Initially, the air is at P-5 [MPa)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (6). (12 points) A piston-cylinder device contains 0.25 kg of air initially at 1.8 MPa and...

    (6). (12 points) A piston-cylinder device contains 0.25 kg of air initially at 1.8 MPa and 360 °C. The air is first expanded isothermally to 400 kPa, then compressed polytropically, with a polytropic exponent of 1.2 to the initial pressure, and finally compressed at the constant pressure to the initial state. Pease find: (a) (3p) The boundary work for the isothermal expansion process. (b) (3p) The boundary work for the polytropic compression process. (c) (3p)The boundary work for the constant...

  • A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle...

    A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle consisting of four processes in series: • Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. • Process 2-3: Polytropic expansion with n = 1.3 to p3 = 0.3 MPa. • Process 3-4: Constant-pressure compression to ν4 = ν1. • Process 4-1: Constant-volume heating. a) Sketch the cycle on a p-ν diagram. b) Calculate the work...

  • One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas...

    One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from P, = 0.5 MPa to P2 = 0.4 MPa Process 2-3: Polytropic expansion with n=k to P; - 0.3 MPa Process 3-4: Constant-pressure compression to V4-V Process 4-1: Constant-volume heating. (a) Sketch the cycle on...

  • PROBLEM-4 (50%) One kg of air is in a piston-cylinder assembly. Air is modeled as an...

    PROBLEM-4 (50%) One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from P1 = 0.5 MPa to P2 = 0.4 MPa Process 2–3: Polytropic expansion with n=k to P3 = 0.3 MPa Process 3–4: Constant-pressure compression to V4 = V1 Process 4–1: Constant-volume heating. (a)...

  • Air in an insulated piston-cylinder assembly undergoes a compression process from 100 kPa, 300 K to...

    Air in an insulated piston-cylinder assembly undergoes a compression process from 100 kPa, 300 K to a second state at 600 K and 1 MPa. How much entropy is produced, in kJ/kgK? You can assume that the air is modeled as an ideal gas. Rair 0.287 kJ/kgK

  • C only please Question 1 (50 points) One kg of air is in a piston-cylinder assembly....

    C only please Question 1 (50 points) One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from P, = 0.5 MPa to P2 = 0.4 MPa Process 2–3: Polytropic expansion with n=k to Pz = 0.3 MPa Process 3-4: Constant-pressure compression to V4 = V....

  • 5. Air expands isothermally constant temperature) in a closed, piston-cylinder device. The original state is given...

    5. Air expands isothermally constant temperature) in a closed, piston-cylinder device. The original state is given by pı = 20 MPa, T = 1000 K. the process continues until the pressure drops to 2 MPa. The original volume of the air is V1 = 1 m². Determine the following: a. the mass of the air in the system, in kg. b. the final density of the air, in kg/m". Remember, Rair = 0.287 kJ/kg-K c. the final volume of the...

  • Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume...

    Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume relation is p. V..2=constant. The initial volume is 0.5 m², the initial temperature is 500 K and initial pressure is 600 kPa. The final pressure is 300 kPa. Determine (a) the mass of air, in kg (b) the boundary work, in kJ (c) the final temperature in K and (d) the heat transfer, in kJ.

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • Air in a piston-cylinder undergoes a cycle with the following processes: Process 1-2: Isobaric process from...

    Air in a piston-cylinder undergoes a cycle with the following processes: Process 1-2: Isobaric process from P = 0.1 MPa, T1 = 600K to T2 = 1200K Process 2-3: Isothermal process to state 3 where P3 = 0.05 MPa Process 3-4: Isochoric process to state 4 where P4 = 0.031 MPa Process 4-1: Polytropic process back to state 1 (a) Show the processes in a P-V plot showing the values. Also calculate or state the values of P. V. T...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT