Question

The relationship you discovered is called Faradays Law and is written as A Equation 1 E = At The negative sign will be discuQuestion 2.18 Is the flux through the loop increasing, decreasing or staying the same as the magnet is moved closer to the lo

ignore 2.21

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Q2.16. More eparation, less the field strength and vice versa.

Q2.17 it increases because number if magnetic field lines the region increases.

Q2.18.yes , it increases because field lines are more denser in this and more in number situation.

Q2.19 it increases

Q2.20 yes

Q 2.22 Induced magnetic field opposes the increment in rate of change of external magnetic flux linked with it.

Add a comment
Know the answer?
Add Answer to:
ignore 2.21 The relationship you discovered is called Faraday's Law and is written as A Equation...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • To practice Tactics Box 25.1Using Lenz's law. Lenz's law is a useful rule for determining...

    To practice Tactics Box 25.1 Using Lenz's law. Lenz's law is a useful rule for determining the direction of the induced current in a loop. Specifically, it says that there is an induced current in a closed conducting loop if and only if the magnetic flux through the loop is changing. The direction of the induced current is such that the induced magnetic field opposes the change in the flux. The following Tactics Box summarizes the essential steps in using...

  • A closed loop conductor that forms a circle with a radius of 2m is located in...

    A closed loop conductor that forms a circle with a radius of 2m is located in a uniform but changing magnetic field. If the maximum emf induced in the loop is 5V what is the maximum rate at which the magnetic field strength is changing if the magnetic field is oriented perpendicular to the plane in which the loop lies? • Draw a sketch or circuit diagram. • Indicate the direction of the applied magnetic field • Is the flux...

  • Learning Goal: To understand the terms in Faraday's law and to be able to identify the...

    Learning Goal: To understand the terms in Faraday's law and to be able to identify the magnitude and direction of induced emf. Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux. Mathematically, it can be written as E=???B?t, where E is the emf induced in a closed loop, and ??B?t is the rate of change of the magnetic flux through a surface bounded by the loop. For uniform magnetic fields the...

  • Q5. Faraday's law says that a) an emf is induced in a closed loop if the...

    Q5. Faraday's law says that a) an emf is induced in a closed loop if the magnetic flux through the loop does not change (ε = lng) = 0) b) an emf is induced in a closed loop if the magnetic flux through the loop changes ΔΦ E = -1 At c) an emf is induced in a closed loop only if a constant current is made to flow through the loop first d) an emf is induced in a...

  • Problem Statement A closed loop conductor that forms a circle with a radius of 2m is...

    Problem Statement A closed loop conductor that forms a circle with a radius of 2m is located in a uniform but changing magnetic field. If the maximum emf induced in the loop is 5V what is the maximum rate at which the magnetic field strength is changing if the magnetic field is oriented perpendicular to the plane in which the loop lies? Visual Representation • Draw a sketch or circuit diagram. • Indicate the direction of the applied magnetic field...

  • Question7 1 pts Which statement is correct regarding Faraday's Law? O An emf is induced around...

    Question7 1 pts Which statement is correct regarding Faraday's Law? O An emf is induced around a closed loop if there is a electric flux through the loop changes. The magnitude of the emf is proportional to the rate the electric flux changes with time. An emf is induced around a closed lool if the magnetic flux through the loop changes with position. The magnitude of the emf is proportional to the rate the magnetic flux changes with position O...

  • **Please Do Not Forget The Visual Representation. Thank You!!** Problem Statement A closed loop conductor that...

    **Please Do Not Forget The Visual Representation. Thank You!!** Problem Statement A closed loop conductor that forms a circle with a radius of 2m is located in a uniform but changing magnetic field. If the maximum emf induced in the loop is 5V what is the maximum rate at which the magnetic field strength is changing if the magnetic field is oriented perpendicular to the plane in which the loop lies? Visual Representation • Draw a sketch or circuit diagram....

  • 5- Creating Magnetism by running a current through a wire is called ______ whereas creating potential...

    5- Creating Magnetism by running a current through a wire is called ______ whereas creating potential difference by changing the magnetic flux through a loop of a conductor is called ________ A- Magnetic induction, Electromagnetic induction. B- Lenz's law, Faraday's law C- Magnetic Induction, Lenz's law D-Faradays Law, Lenz's Law E- Electromagnetic induction, Faraday's law 6- The emf induced in a coil that is rotating in a magnetic field will be at a maximum when : a- The change in...

  • Q4 A bar magnet is held above a loop of wire in a horizontal plane, as...

    Q4 A bar magnet is held above a loop of wire in a horizontal plane, as shown in Figure. According to the Lenz's law (write the Lenz's law), find the direction of the induced current through the resistor (a) while the magnet is falling toward the loop and (b) after the magnet has passed through the loop and moves away from it (draw the magnetic field lines of both the magnet and loop). R

  • Moving charges will produce a local magnetic field, but the reverse is also true a changing...

    Moving charges will produce a local magnetic field, but the reverse is also true a changing magnetic field will similarly induce charges to move (ie. produce current). Consider a magnet moving into a coil of wire: A spinal coil of wire with many closely-spaced tums this is called a solenoid is connected to a micro-ammeter as shown in the diagram above. As the magnet moves into the coil, any induced current will be measured by the micro-ammeter. Question On the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT