Question

A 3kg mass and a 10 kg mass are attched to each other by a spring...

A 3kg mass and a 10 kg mass are attched to each other by a spring with spring constant k=500N/m and placed on a frictionless table. the masses are then pressed toward each other in such a way as to compressed the spring 0.05m. calculate the magnitude and direction of the acceleration of each mass the moment after they are released.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 3kg mass and a 10 kg mass are attched to each other by a spring...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two objects of masses m1 = 0.44 kg and m2 = 0.92 kg are placed on...

    Two objects of masses m1 = 0.44 kg and m2 = 0.92 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k = 250 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.0 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b)....

  • It takes 25 N to compress a spring a distance of 30 cm. That compressed spring...

    It takes 25 N to compress a spring a distance of 30 cm. That compressed spring then has a 3kg block placed in contact with it. The spring is released, causing the 3 kg block to accelerate along a frictionless floor. After leaving the spring, the 3kg block continues moving on the frictionless floor until it collides with and sticks to a 5kg block, initially at rest. What is the spring constant of the spring?

  • help 2. Mass mi 10.0 kg is initially held against the spring of spring constant k...

    help 2. Mass mi 10.0 kg is initially held against the spring of spring constant k 100 N/m. The spring is compressed a distance x 0.45 m. When released, m, is fired towards a block of mass m 4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h- 0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ-0.25 and is a distance d...

  • A 2.00 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on...

    A 2.00 kg mass is pushed against a horizontal spring of force constant 28.0 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 13.5 J of potential energy in it, the mass is suddenly released from rest. B) When does this occur? C) What is the greatest acceleration of the mass?

  • A 2.60 kg mass is pushed against a horizontal spring of force constant 25.0 N/cm on...

    A 2.60 kg mass is pushed against a horizontal spring of force constant 25.0 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 12.5 J of potential energy in it, the mass is suddenly released from rest. Part A Find the greatest speed the mass reaches. Part C What is the greatest acceleration of the...

  • A spring stretches 0.150 m when a 0.300 kg. mass is hung vertically from it. From...

    A spring stretches 0.150 m when a 0.300 kg. mass is hung vertically from it. From this information you can determine the spring constant, k. Next, the spring is set up horizontally with the 0.300 kg. mass resting on a frictionless table. The block is pushed so that the spring is compressed 0.100 m from the equilibrium point, and released from rest. Determine: The spring constant k (in N/m)? The amplitude of the horizontal oscillation (in m)? The angular frequency,...

  • 2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m....

    2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m. The spring is compressed a distance x 0.45 m. When released, m is fired towards a block of mass m2-4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h-0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ.-0.25 and is a distance d-1.06 m long. The blocks...

  • A 2.25-kg mass is pushed against a horizontal spring of force constant 23.7 N/cm on a...

    A 2.25-kg mass is pushed against a horizontal spring of force constant 23.7 N/cm on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed enough to store 11.6 J of potential energy in it, the mass is suddenly released from rest.(a) Find the greatest speed the mass reaches. m/s ? (b) What is the greatest acceleration of the mass m/s2...

  • A mass of 3kg tethered to a spring is measured to make 83 oscillations in 8s....

    A mass of 3kg tethered to a spring is measured to make 83 oscillations in 8s. What is the spring constant k? The amplitude of oscillations is 0.11 m. What is the magnitude of the maximum acceleration of the mass?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT