Question

Which of these sequences are convergent? (Select all that apply) (A) An= _cos (2n) 5 g (B) (n = 78 + 4 2n + (-1)5 8n - (-1
0 0
Add a comment Improve this question Transcribed image text
Answer #1

\\$Answer A)$\\\\ a_n = \frac{\cos^4(2n)}{5^n}\\\\ $We know that $\\\\ -1 \leq \cos^4(2n) \leq 1 \\\\ \Rightarrow -\frac{1}{5^n} \leq \frac{\cos^4(2n)}{5^n} \leq \frac{1}{5^n}\\\\ \Rightarrow \lim_{n\to \infty }-\frac{1}{5^n} \leq \lim_{n\to \infty }\frac{\cos^4(2n)}{5^n} \leq\lim_{n\to \infty } \frac{1}{5^n}\\\\ \Rightarrow 0 \leq \lim_{n\to \infty }\frac{\cos^4(2n)}{5^n} \leq 0 \\\\ \Rightarrow \lim_{n\to \infty }\frac{\cos^4(2n)}{5^n} = 0\:\:\:\: $ by Sandwich Theorem$\\\\ $Hence, $a_n = \frac{\cos^4(2n)}{5^n} $ converges$\\\\

\\$Answer B)$ \\\\a_n = \frac{9^n}{n^8+4}\\\\$Clearly, $ a_n $ is a sequence of positive real numbers$\\\\ \lim_{n\to \infty} \frac{a_{n+1}}{a_n} = \lim_{n\to \infty}\frac{9^{n+1}\:\big(n^8 + 4\big)}{\big((n+1)^8+4\big)\: 9^n} = \lim_{n\to \infty}\frac{9n^8\cdot9^{n}\:\big(1 + \frac{4}{n^8}\big)}{n^8\:\big((1+\frac1n)^8+\frac{4}{n^8}\big)\: 9^n}\\\\ \Rightarrow \lim_{n\to \infty} \frac{a_{n+1}}{a_n} =\lim_{n\to \infty}\frac{9\:\big(1 + \frac{4}{n^8}\big)}{\:\big((1+\frac1n)^8+\frac{4}{n^8}\big)} = \frac{9(1+0)}{(1+0)^8 + 0} = 9 > 1\\\\\\ $Hence, the series $a_n = \frac{9^n}{n^8+4} $ diverges by Ratio Test$

\\$Answer C)$ \\\\a_n = \frac{2n+ (-1)^n5}{8n-(-1)^n4}\\\\ \lim_{n\to \infty} a_n = \lim_{n\to \infty} \frac{2n+ (-1)^n5}{8n-(-1)^n4}= \lim_{n\to \infty} \frac{n\big(2+ \frac{(-1)^n5}{n}\big)}{n\big(8-\frac{(-1)^n4}{n}\big)}\\\\ \Rightarrow \lim_{n\to \infty} a_n = \lim_{n\to \infty} \frac{2+ \frac{(-1)^n5}{n}}{8-\frac{(-1)^n4}{n}} = \frac{2+0}{8-0} = \frac{1}{4}\\\\ $Hence, the series $a_n = \frac{2n+ (-1)^n5}{8n-(-1)^n4} $ converges$\\\\

\\$Answer D)$\\\\ a_n = (-2)^n\\\\ a_{2n} = (-2)^{2n} = 4^n \to \infty $ as $ n\to \infty \\\\$Hence, $ a_n $ has a sub-sequence $a_{2n} $ that diverges to $ \infty.\\\\ $ Hence, $ a_n = (-2)^n $ cannot converge.$

\\$Answer E)$ \\\\a_n = \frac{2^n + n^5 }{3^n + 4^n}\\\\ \lim_{n\to \infty} a_n = \lim_{n\to \infty} \frac{2^n + n^5 }{3^n + 4^n}= \lim_{n\to \infty} \frac{(\frac{2}{4})^n + ({n^5}/{4^n} )}{(\frac{3}{4})^n + 1^n}\\\\ $We know that, as $ n\to \infty, $ we have $ a^n \to 0 $ for $|a| < 1\\\\ $Hence, $\\\\ (\frac{2}{4})^n \to 0 $ as $ n \to \infty\\\\ (\frac{3}{4})^n \to 0 $ as $ n \to \infty\\\\ 1^n = 1 \to 1 $ as $ n \to \infty\\\\ $Let $ L = \lim_{n\to \infty} \frac{n^5}{4^n} \:\:\:\:(= \frac{\infty}{\infty} $ form$)\\\\ $Apply L'hopital Rule$\\\\ \Rightarrow L = \lim_{n\to \infty} \frac{5\:n^4}{4^n\: \ln 4} \:\:\:\: (= \frac{\infty}{\infty} $ form$)\\\\ $Apply L'hopital Rule again$\\\\ \Rightarrow L = \lim_{n\to \infty} \frac{20\:n^3}{4^n\: \ln^2 4} \:\:\:\:(= \frac{\infty}{\infty} $ form$)\\\\ $Apply L'hopital Rule again$\\\\ \Rightarrow L = \lim_{n\to \infty} \frac{60\:n^2}{4^n\: \ln^3 4} \:\:\:\:(= \frac{\infty}{\infty} $ form$)\\\\

\\$Apply L'hopital Rule again$\\\\ \Rightarrow L = \lim_{n\to \infty} \frac{120\:n}{4^n\: \ln^4 4} \:\:\:\:(= \frac{\infty}{\infty} $ form$)\\\\ $Apply L'hopital Rule$\\\\ \Rightarrow L = \lim_{n\to \infty} \frac{120}{4^n\: \ln^5 4} = 0\\\\ \Rightarrow \lim{n\to \infty} \frac{n^5}{4^n} = 0\\\\ $Combining all this, we get $\\\\ \lim_{n\to \infty }a_n= \lim_{n\to \infty} \frac{(\frac{2}{4})^n + ({n^5}/{4^n} )}{(\frac{3}{4})^n + 1^n}\\\\ = \frac{0 + 0}{0+1} = 0 \\\\ $Hence, the series $ a_n = \frac{2^n + n^5 }{3^n + 4^n} $ converges$

\\$Answer F)$\\\\ a_n = \cos(\frac{n\pi}{2})\\\\ a_{4n} = \cos(\frac{4n\pi}{2}) = \cos(2n\pi) = 1\\\\ \Rightarrow a_{4n} \to 1 $ as $n\to \infty \:\:\:\:---> $ (1)$\\\\ a_{4n+2} = \cos(\frac{(4n+2)\pi}{2}) = \cos((2n+1)\pi) = -1\\\\\Rightarrow a_{4n+2} \to (-1) $ as $ n\to \infty \:\:\:\:---> $ (2)$\\\\$From (1) and (2) we see that $ a_n $ has two sub-sequences $ a_{4n} $ and $ a_{4n+2} $ that converge to distinct limits.$\\\\ $Hence, the sequence $a_n = \cos(\frac{n\pi}{2}) $ is divergent$

\\\mathbf{Conclusion:}\\\\ \mathbf{Only\:the\:following\: sequences\:converge:}\\\\\\ a_n = \frac{\cos^4(2n)}{5^n}\\\\\\ a_n = \frac{2n+(-1)^n5}{8n-(-1)^n4}\\\\\\ a_n = \frac{2^n + n^5}{3^n + 4^n}

Add a comment
Know the answer?
Add Answer to:
Which of these sequences are convergent? (Select all that apply) (A) An= _cos (2n) 5" g"...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT