Question

If the volume of a certain gas is changed from V_1
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1.00 X 0.0 82X 273 2 22.7 L Ana Ne know VI L-DD 2DD 2-0TO Volume of 2 to be added 느·「b-400

Add a comment
Know the answer?
Add Answer to:
If the volume of a certain gas is changed from V_1 to V_2, the corresponding change...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Imagine that the gas shown in the simulation is an ideal gas such as helium. Notice...

    Imagine that the gas shown in the simulation is an ideal gas such as helium. Notice that the final number of moles of gas is 1.00 mol for each experimental run. You can find the final volume of the gas using they axis of the graph shown. Consider an experimental run at 273 K where the initial number of moles (n_i) is actually 1.00 mol, and the final number of moles (n_2) is 2.00 mol. Use the simulation to find...

  • Combined Gas Relationship Since the Ideal Gas Law produces a constant (R), it can be used...

    Combined Gas Relationship Since the Ideal Gas Law produces a constant (R), it can be used to look at a gas sample in which initial and final conditions have changed. The combined gas relationship is as follows P.V R=P.V2 n, T n2 T2 where P, Vi,and T, and n, are the initial pressure, volume, temperature, and number of moles of gas. The final conditions are represented by P, V2, T2 and n2. If any of the conditions in the initial...

  • An ideal monatomic gas is contained in a vessel of constant volume 0.470 m3. The initial...

    An ideal monatomic gas is contained in a vessel of constant volume 0.470 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 30.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. mol (b) Find the specific...

  • Let us first examine the behavior of an ideal gas when we force the volume to...

    Let us first examine the behavior of an ideal gas when we force the volume to be a value of our choosing. We can examine how changes to the absolute temperature and number of moles affect the pressure of the gas particles (by selecting pressure with Rspd such that pressure cannot be controlled). Assume that 0.03 mol of helium at a temperature of 275.00 K occupy a volume of 1.40 L. Use the Run Experiment tool in the Simulation to...

  • 4-/6.25 points My Notes SerCP10 12.P.023. An ideal monatomic gas is contained in a vessel of constant volume 0.260 m3....

    4-/6.25 points My Notes SerCP10 12.P.023. An ideal monatomic gas is contained in a vessel of constant volume 0.260 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 22.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the...

  • 3. Avogadro's law states that a. 1 liter of any gas contains 6.02 x 1023 gas...

    3. Avogadro's law states that a. 1 liter of any gas contains 6.02 x 1023 gas molecules. b. the volume of a gas is directly proportional to its temperature. c. the gas constant equals 0.0821 L atm/(mol K) for all ideal gases. d. the volume of a gas must always be a constant. e. equal volumes of all gases at the same pressure and temperature contain an equal number of moles.

  • The ideal gas law describes the relationship among the volume of an ideal gas (V), its...

    The ideal gas law describes the relationship among the volume of an ideal gas (V), its pressure (P), its absolute temperature (T), and number of moles (n): PV=nRT Under standard conditions, the ideal gas law does a good job of approximating these properties for any gas. However, the ideal gas law does not account for all the properties of real gases such as intermolecular attraction and molecular volume, which become more pronounced at low temperatures and high pressures. The van...

  • show calculations. 5-1, please. Unit 5: Gases Ato Basic Gas Relations . onsider the Ideal Gas...

    show calculations. 5-1, please. Unit 5: Gases Ato Basic Gas Relations . onsider the Ideal Gas Law: where n is the number of moles, P is the pressure in atm nRT wnere n is the number of moles, P is the pressure in atm, is the vol ume in L, T is the absolute (Kelvin) temperature, and R = 0.082 L atm/mole K ote: 1. Parameters that are on oppos1te sign are directly proportional to ea 2. Parameters that are...

  • What is the volume of the sphere in Procedure 2 in units of cm3? Express your...

    What is the volume of the sphere in Procedure 2 in units of cm3? Express your answer to two significant figures. LAB 14: IDEAL GAS LAW BASIC CONCEPTS TEXTBOOK: SECTIONS 15.2, YOUNG, 10TH EDITION DEFINITIONS Volume: The space taken up by an object, measured in cubic meters (m"). Pressure: For an enclosed gas, pressure is defined as the force exerted per area by the gas on the container walls, measured in Pascal (1 N/m) Temperature: A measure of the average...

  • Volume and Moles 6 of 15 > Review Constants Periodic Table Avogadro's law states that the volume, V. of a gas is...

    Volume and Moles 6 of 15 > Review Constants Periodic Table Avogadro's law states that the volume, V. of a gas is directly related to the number of moles of the gas when temperature and pressure are constant (Figure 1) Part B Vi Figure A sample of gas in a cylinder as in the example in Part A has an initial volume of 560 L and you have determined that it contains 1.50 moles of gas. The next day you...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT