Question

12. A 10422 g sample of powdered aluminum is bumed in a constant volume bomb calorimeter containing excess oxygen to form Aho The calorimeter has a heat capacity of 8.775 oc-1. The temperature of the calorimeter increases by 3.6800C. Determine the molar intemal energy of combustion AU and the molar enthalpy of combustion AH for aluminum at 25%C 4 Al(s) 3 O2(g 2 Al O,(s)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

D422 heat cafout bonb calb ธ.wet:4hi.y 32-212 (MU) 24.8 9 다

Add a comment
Know the answer?
Add Answer to:
A 1.0422 g sample of powdered aluminum is burned in a constant volume bomb calorimeter containing...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.1785 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat...

    A 0.1785 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat capacity of the calorimeter plus water was 5,760 J/C. If the temperature rise of the calorimeter with water was 1.25*C, calculate the enthalpy of combustion(in kJ/mol) of magnesium. Mg(s) + 1/2O2(g) -> MgO(s) Write answer to three significant figures. Numeric Response

  • Ignition wires heat sample Thermometer Stirrer A bomb calorimeter, or constant volume calorimeter...

    Ignition wires heat sample Thermometer Stirrer A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter This is known as calibrating the calorimeter In the laboratory a student burns a 0.319-g sample of phenanthrene (C14H10 in a bomb calorimeter containing 1070. g of water....

  • A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently,...

    A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently, the temperature rose by 5.52°C. If the heat capacity of the bomb plus water was 8.75 kJ / °C, calculate the molar heat of combustion of methanol.

  • A 1.764-g sample of heptanoic acid, C7H14O2 (130.19 g/mol) was burned in a bomb calorimeter with...

    A 1.764-g sample of heptanoic acid, C7H14O2 (130.19 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 23.68 °C; after combustion the calorimeter and the water had a temperature of 32.12 °C. The calorimeter had a heat capacity of 500 J/K, and contained 1.462 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of heptanoic acid.

  • 1. 2. A bomb calorimeter, or a constant volume calorimeter, is a device often used to...

    1. 2. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods In an experiment, a 0.3568 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.030x10 g of water. During the combustion the temperature increases from 25.45 to 28.29 °C. The heat capacity of water is 4.184 J gC The heat capacity of the...

  • 7. A 2.548-9 sample of valine, CsH ,NO, (117.15 g/mol) was burned in a bomb calorimeter...

    7. A 2.548-9 sample of valine, CsH ,NO, (117.15 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 18.42 °C, after combustion the calorimeter and the water had a temperature of 29.13 °C. The calorimeter had a heat capacity of 633 J/K, and contained 1.255 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of valine.

  • Thermometer Ignition wires heat sample Stirrer A bomb calorimeter, or a constant volume calorimeter, is a...

    Thermometer Ignition wires heat sample Stirrer A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Water In an experiment, a 0.3916 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.266x10 g of water. During the combustion the temperature increases from 23.47 to 26.10 °C. The heat capacity of water is 4.184 J gloc-1....

  • 1. 2. A bomb calorimeter, or constant volume calorimeter, is a device often used to determine...

    1. 2. A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.425-g sample of diphenylacetylene (C14H10) in a bomb calorimeter containing 1170. g of water. The temperature increases from...

  • 7. A 2.053-g sample of ethylene glycol, CH.02 (62.07 g/mol) was burned in a bomb calorimeter...

    7. A 2.053-g sample of ethylene glycol, CH.02 (62.07 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 16.49 °C; after combustion the calorimeter and the water had a temperature of 23.12 °C. The calorimeter had a heat capacity of 567 J/K, and contained 1.316 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of ethylene glycol.

  • 7. A 2.529-g sample of glutaric acid, CsH.O.(132.12 g/mol) was burned in a bomb calorimeter with excess oxygen. The...

    7. A 2.529-g sample of glutaric acid, CsH.O.(132.12 g/mol) was burned in a bomb calorimeter with excess oxygen. The temperature of the calorimeter and the water before combustion was 23.63 °Cafter combustion the calorimeter and the water had a temperature of 32.48 °C. The calorimeter had a heat capacity of 747 J/K, and contained 0.926 kg of water. Use these data to calculate the molar heat of combustion (in kJ) of glutaric acid.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT